Influenza A virus (IAV) is the most harmful to human beings among the various subtypes of influenza virus, which can lead to immune response, cause serious inflammation and damage to the lung, and has strong pathogenicity and transmission. Salmeterol is a candidate compound with anti-IAV activity screened by virtual network proximity predication. In this paper, we further evaluated the pharmacodynamics of salmeterol against IAV in vivo and in vitro. The results showed that salmeterol could inhibit the activity of three IAV strains (H1N1, H3N2 and H1N1 strain resistant to oseltamivir and amantadine) in the MDCK cells and protect primary HAE cells from cytopathic effect caused by IAV. In vivo, salmeterol could improve the survival state of infected mice, which showed good anti-IAV effect. Further mechanism studies shown that salmeterol could improve the pathological characteristics of the lungs, reduce the loads of virus and the expression of M2 and IFITM3 proteins in the lungs of mice. In addition, salmeterol could inhibit the formation of NLRP3 inflammasome, thus reducing the production of the TNF-α, IL-6 and MCP-1 and alleviating inflammatory symptoms. Finally, salmeterol could improve the spleen morphology, increase spleen index and significantly increase the ratio of lymphocyte CD4+/CD8+ to improve immune function of infected mice. In our study, it is confirmed that salmeterol has certain anti-IAV activity through pharmacodynamic study in vivo and in vitro, which lays an important research foundation for the new indication of salmeterol and discovery of new drug against IAV.
Highly sensitive detection of low-frequency EGFR-L858R mutation is particularly important in guiding targeted therapy of nonsmall-cell lung carcinoma (NSCLC). To this end, a ligase chain reaction (LCR)-based electrochemical biosensor (e-LCR) with an inverted sandwich-type architecture was provided by combining a cooperation of lambda exonuclease-RecJf exonuclease (λ-RecJf exo). In this work, by designing a knife-like DNA substrate (an overhang ssDNA part referred to the "knife arm") and introducing the λ-RecJf exo, the unreacted DNA probes in the LCR were specially degraded while only the ligated products were preserved, after which the ligated knife-like DNA products were hybridized with capture probes on the gold electrode surface through the "knife arms", forming the inverted sandwich-type DNA structure and bringing the methylene blue-label close to the electrode surface to engender the electrical signal. Finally, the sensitivity of the e-LCR could be improved by 3 orders of magnitude with the help of the λ-RecJf exo, and due to the mutation recognizing in the ligation site of the employed ligase, this method could detect EGFR-L858R mutation down to 0.01%, along with a linear range of 1 fM-10 pM and a limit detection of 0.8 fM. Further, the developed method could distinguish between L858R positive and negative mutations in cultured cell samples, tumor tissue samples, and plasma samples, whose accuracy was verified by the droplet digital PCR, holding a huge potential in liquid biopsy for precisely guiding individualized-treatment of NSCLC patients with advantages of high sensitivity, low cost, and adaptability to point-of-care testing.
PURPOSE: Convergent evidence suggest that amacrine cells (ACs) might provide excitatory inputs to retinal ganglion cells (GCs), and such inputs might be non-glutamatergic. Here, we sought to optogenetically characterize these non-glutamatergic inputs in the VGAT-ChR2-EYFP mouse, in which channelrhodopsin-2 (ChR2) are expressed in inhibitory CNS neurons.
METHODS: Double-staining immunohistochemical assays were used to characterize the retinal expression profile of the transgene with various specific markers for retinal neurons. In a whole-mount preparation, when ACs were optogenetically activated, whole-cell recordings were applied on GCs and postsynaptic responses were examined. Excitatory and inhibitory inputs were separated by holding the membrane potential at -70 mV and 0 mV, respectively.
RESULTS: EYFP signals were detected in the vast majority of horizontal cells and ACs, but not in photoreceptors, bipolar cells and GCs, suggesting a confined ChR2 expression in retinal inhibitory interneurons. When glutamatergic transmission was blocked pharmacologically and ACs were stimulated optogenetically, an EPSC (named as non-glutamatergic light-evoked EPSC, or nG-L-EPSC) was elicited in most GCs (percentage: ON-type GCs, 82%; OFF-type GCs, 79%; ON-OFF-type GCs, 92%). Furthermore, in a population (~87%) of GCs, their nG-L-EPSCs survived superimposed cholinergic blockade (the residual responses further named as nGnC-L-EPSCs). The nGnC-L-EPSCs remained in the presence of inhibitory transmitter antagonists and MFA, a gap junction blocker, but was completely abolished by Co2+, indicating that it is not mediated by inhibitory signals, or by electrical coupling with neighboring ChR2-expressing ACs, but is indeed a postsynaptic response due to optogenetic activation of ACs. Finally, quantitative analysis showed that all three GC subclasses are driven by such nGnC excitatory inputs, but likely with moderate difference in input strength.
CONCLUSIONS: Most mouse GCs possess non-glutamatergic excitatory synaptic inputs, which are mediated by chemical synapses via acetylcholine and other unknown excitatory transmitters. ACs might play a more intricate role in inner retinal signal processing than ever thought.
Thermoelectric energy generators (TEGs) that can convert body heat into electricity are considered most promising to drive wearable devices. Many TEG designs with a polysilicon thermocouple have been proposed for implementation in high-yield semi-conductor foundry services. This study shows that the area density, defined by the number of thermocouples per mm2, is a better index than the fill factor in evaluating TEG performance. The effects of thermocouple length, width, and spacing (between the adjacent thermocouples) on area density, and hence on TEG performance, are analyzed. For a TEG with 33 × 1 μm (length × width) co-planar thermocouples (P- and N-thermoleg side by side) and 1 μm spacing between two adjacent thermocouples, the area density is 4902 thermocouples per mm2 and it can deliver a 0.110 μW/cm2K2 power factor and a 12.906 V/cm2K voltage factor. The performance can be improved further by 57 × 1 μm stacked thermocouples (P-thermoleg above N-thermoleg) with a higher area density 8621 to achieve results of 0.110 μW/cm2K2 and 22.638 V/cm2K. Such a high area density not only increases TEG performance, but also improves the DC-DC converter efficiency. A 5 × 5 mm2 TEG chip with co-planar or stacked thermocouples is shown to deliver above 3 μW and over 3 V when operating at a 10 °C temperature difference.