Pancreatic adenocarcinoma up-regulated factor (PAUF) plays an important role in tumor growth, metastasis, and immune evasion in the pancreatic tumor microenvironment, and recent studies suggest an association between PAUF expression and poor prognosis in ovarian cancer patients. The current study aimed 1) to characterize the potential tumor-promoting role of PAUF in ovarian cancer, using in vitro and in vivo models, including a PAUF-knockout OVCAR-5 cell line, and 2) to explore the potential therapeutic effects of an anti-PAUF antibody for ovarian cancer. Recombinant PAUF significantly increased tumor metastatic capacity (migration, invasion, and adhesion) in all the ovarian cancer cell lines tested, except for the OVCAR-5 cell line which expresses PAUF at a much higher level than the other cells. PAUF-knockout in the OVCAR-5 cell line led to apparently delayed tumor growth in vitro and in vivo. Furthermore, the administration of an anti-PAUF antibody exhibited notable sensitizing and synchronizing effects on docetaxel in mice bearing the OVCAR-5 xenograft tumors. Taken together, this study shows that the expression level of PAUF is an independent factor determining malignant behaviors of ovarian cancer and, for the first time, it suggests that PAUF may be a promising therapeutic target for high PAUF-expressing ovarian cancer.
Oncolytic viruses are a promising class of anti-tumor agents; however, concerns regarding uncontrolled viral replication have led to the development of a replication-controllable oncolytic vaccinia virus (OVV). The engineering involves replacing the native thymidine kinase (VV-tk) gene, in a Wyeth strain vaccinia backbone, with the herpes simplex virus thymidine kinase (HSV-tk) gene, which allows for viral replication control via ganciclovir (GCV, an antiviral/cytotoxic pro-drug). Adding the wild-type HSV-tk gene might disrupt the tumor selectivity of VV-tk deleted OVVs; therefore, only engineered viruses that lacked tk activity were selected as candidates. Ultimately, OTS-412, which is an OVV containing a mutant HSV-tk, was chosen for characterization regarding tumor selectivity, sensitivity to GCV, and the influence of GCV on OTS-412 anti-tumor effects. OTS-412 demonstrated comparable replication and cytotoxicity to VVtk- (control, a VV-tk deleted OVV) in multiple cancer cell lines. In HCT 116 mouse models, OTS-412 replication in tumors was reduced by >50% by GCV (p = 0.004); additionally, combination use of GCV did not compromise the anti-tumor effects of OTS-412. This is the first report of OTS-412, a VV-tk deleted OVV containing a mutant HSV-tk transgene, which demonstrates tumor selectivity and sensitivity to GCV. The HSV-tk/GCV combination provides a safety mechanism for future clinical applications of OTS-412.
Apoptosis and necroptosis occur in renal tubular epithelial cell (RTEC) death in acute kidney injury (AKI), and may be regulated by several methods. The present study identified a protective effect of necrostatin‑1 (Nec‑1) on RTECs via a flow-control-like effect. The results established a hypoxic‑ischemic injury model of rat NRK‑52E RTECs using tumour necrosis factor‑α followed by ATP depletion with antimycin A and the pan-caspase pathway blocker, benzyloxycarbonyl-Val-Ala-Asp-fluoro-methylketone. Following pre‑treatment of cells with Nec‑1, cell organelle inflation, fragmentation inhibition and improved cell viability were observed with a parallel reduced expression of microtubule‑associated protein 1A/1B‑light chain 3‑II. Nec‑1 was involved in flow control in the process of cell injury and death. In conclusion, the present study indicated that Nec‑1 provides a protective effect and serves an important role in the prevention of AKI in an NRK‑52E cell model. Further studies will be required to fully investigate the role of Nec‑1 in the development of AKI in vivo.
Abstract The purpose of this study was to determine the demographic and pharmacogenetic covariates that influence the disposition of efavirenz (EFV) and its major metabolites. A population pharmacokinetic (PK) model was developed from a randomized, cross‐over, drug‐interaction study in healthy male Korean subjects (n = 17). Plasma concentrations of EFV and its hydroxy‐metabolites (0–120 hours) were measured by LC/MS/MS. Genomic DNA was genotyped for variants in the cytochrome P450 (CYP) 2A6, 2B6, 3A5, and MDR1 genes. A PK model was built in a stepwise procedure using nonlinear mixed effect modeling in NONMEM 7. The covariate model was built using the generalized additive modeling and forward selection‐backward elimination. Model‐based simulations were performed to predict EFV steady‐state concentrations following 200, 400, and 600 mg daily oral dose among different CYP2B6 genotypes. The final model included only CYP2B6 genotype as a covariate that predicts EFV clearance through the formation of 8‐OH EFV that represented 65% to 80% of EFV clearance. The total clearance of EFV in CYP2B6*6/*6 genotype was ∼30% lower than CYP2B6*1/*1 or CYP2B6*1/*6 alleles ( P < .001). Clopidogrel reduced both formation and elimination clearances of 8‐OH EFV by 22% and 19%, respectively ( P = .033 and .041). Other demographics and genotype of accessory CYP pathways did not predict EFV or metabolites PK. CYP2B6 genotype was the only significant predictor of EFV disposition. The developed model may serve as the foundation for further exploration of pharmacogenetic‐based dosing of EFV.
Abstract Background Red blood cell distribution width (RDW) and the platelet-to-lymphocyte ratio (PLR) are associated with different types of prognoses in critically ill patients. But, the value of RDW and PLR in predicting the occurrence of acute kidney injury (AKI) in critically ill patients are unknown. The purpose of the study was to explore the associations of RDW and PLR with AKI incidence. Methods Among 1500 adult patients in the intensive care unit (ICU) between January 2016 and December 2019 were enrolled, we examined the associations of baseline RDW and PLR with the risk of AKI development using logistical analysis. In addition, we explored the value of RDW and PLR in predicting in-hospital mortality. Results The study participants included 951 men and 549 women, aged 60.1±16.14 years. The subjects had a mean RDW of 14.65±2.14% and a mean PLR of 188.16±129.2. Overall, 615 (41%) patients were diagnosed with AKI. There were remarkable differences in RDW and the PLR between the AKI and non-AKI groups ( P <0.001). After adjustment, the association of RDW with AKI development risk strengthened (OR: 1.28, 95% CI: 1.19-1.36). Moreover, we divided the groups into two subgroups each; the high-RDW (≥14.045%) group had a high risk of developing AKI (OR=5.189, 95% CI: 4.088-6.588), while the high-PLR(≥172.067)group had a risk of developing AKI (OR=9.11,95% CI:7.09-11.71). The areas under the receiver operating characteristic curves (AUCs) for the prediction of AKI incidence based on RDW and PLR were 0.780 (95% CI: 0.755-0.804) and 0.728 (95% CI:0.702-0.754) (all P < 0.001), with cut-off values of 14.045 and 172.067, respectively. Moreover, a higher RDW was associated with a higher rate of hospital mortality (OR: 2.907, 2.190-3.858), and the risk of in-hospital mortality related to PLR was 1.534 (95%CI: 1.179-1.995). The AUC for in-hospital mortality based on RDW was 0.663 (95%CI:0.628-0.698), while the AUC for in-hospital mortality based on the PLR was 0.552 (0.514-0.589). Conclusions A higher RDW related to a higher risk of the occurrence of AKI and in-hospital mortality in ICU.The PLR also showed predictive value for the occurrence of AKI but did not show any clear prediction value of in-hospital mortality.
Monocyte-to-lymphocyte ratio (MLR) and neutrophil-to-lymphocyte ratio (NLR) are considered as surrogate inflammatory indexes. Previous studies indicated that NLR was associated with the development of septic acute kidney injury (AKI). The objective of the present study was to explore the value of MLR and NLR in the occurrence of AKI in intensive care unit (ICU) patients. The clinical details of adult patients (n = 1500) who were admitted to the ICU from January 2016 to December 2019 were retrospectively examined. AKI was diagnosed according to the Kidney Disease: Improving Global Outcomes criteria. The development of AKI was the main outcome, and the secondary outcome was in-hospital mortality. Overall, 615 (41%) patients were diagnosed with AKI. Both MLR and NLR were positively correlated with AKI incidence (p < 0.001). Multivariate logistic regression analysis suggested that the risk value of MLR for the occurrence of AKI was nearly three-fold higher than NLR (OR = 3.904, 95% CI: 1.623‒9.391 vs. OR = 1.161, 95% CI: 1.135‒1.187, p < 0.001). The areas under the receiver operating characteristic curve (AUC) for MLR and NLR in the prediction of AKI incidence were 0.899 (95% CI: 0.881‒0.917) and 0.780 (95% CI: 0.755‒0.804) (all p < 0.001), with cutoff values of 0.693 and 12.4. However, the AUC of MLR and NLR in the prediction of in-hospital mortality was 0.583 (95% CI: 0.546‒0.620, p < 0.001) and 0.564 (95% CI: 0.528‒0.601, p = 0.001). MLR, an inexpensive and widely available parameter, is a reliable biomarker in predicting the occurrence of AKI in ICU patients.
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging epidemic infectious disease with high mortality in East Aisa, especially in China. To predict the prognosis of SFTS precisely is important in clinical practice.From May 2013 to November 2015, 233 suspected SFTS patients were tested for SFTS virus using RT-PCR. Cox regression model was utilized to comfirm independent risk factors for mortality. A risk score model for mortality was constructed based on regression coefficient of risk factors. Log-rank test was used to evaluate the significance of this model.One hundred seventy-four patients were confirmed with SFTS, of which 40 patients died (23%). Baseline age, serum aspartate aminotransferase (AST) and serum creatinine (sCr) level were independent risk factors of mortality. The area under ROC curve (AUCs) of these parameters for predicting death were 0.771, 0.797 and 0.764, respectively. And hazard ratio (HR) were 1.128, 1.002 and 1.013, respectively. The cutoff value of the risk model was 10. AUC of the model for predicting mortality was 0.892, with sensitivity and specificity of 82.5 and 86.6%, respectively. Log-rank test indicated strong statistical significance (×2 = 88.35, p < 0.001).This risk score model may be helpful to predicting the prognosis of SFTS patients.
Acute kidney injury (AKI) is a serious complication of acute hemorrhagic stroke (AHS). Early detection and early treatment are crucial for patients with AKI. We conducted a study to analyze the role of the monocyte-to-lymphocyte ratio (MLR) in predicting the development of AKI after AHS.This retrospective observational study enrolled all subjects with AHS who attended the neurosurgical intensive care unit (NSICU) at the First Affiliated University of South China between 2018 and 2021. Patient demographics, laboratory data, treatment details, and clinical outcomes were recorded.Of the 771 enrolled patients, 180 (23.3%) patients developed AKI. Compared to patients without AKI, those with AKI had a higher MLR and the neutrophil-lymphocyte ratio (NLR) at admission (P < 0.001). The MLR and the NLR at admission were associated with an increased AKI risk, with odds ratios (ORs) of 8.27 (95% CI: 4.23, 16.17, p < 0.001) and 1.17 (95% CI: 1.12, 1.22, p < 0.001), respectively. The receiver operating characteristic curve (ROC) analysis was conducted to analyze the ability of the MLR and NLR to predict AKI, and the areas under the curve (AUCs) of the MLR and the NLR were 0.73 (95% CI: 0.69, 0.77, p < 0.001) and 0.67 (95% CI: 0.62, 0.72, p < 0.001), with optimal cutoff values of 0.5556 and 11.65, respectively. The MLR and the NLR at admission were associated with an increased in-hospital mortality risk, with ORs of 3.13 (95% CI: 1.08, 9.04) and 1.07 (95% CI: 1.00, 1.14), respectively. The AUCs of the MLR and the NLR for predicting in-hospital mortality were 0.62 (95% CI: 0.54, 0.71, p = 0.004) and 0.52 (95% CI: 0.43, 0.62, p = 0.568), respectively. The optimal cutoff value for the MLR was 0.7059, with a sensitivity of 51% and a specificity of 73.3%.MLR and NLR measurements in patients with AHS at admission could be valuable tools for identifying patients at high risk of early AKI. The MLR was positively associated with in-hospital mortality and the NLR showed a weak ability for the prediction of in-hospital mortality.