A facile method for preparing porous polydimethylsiloxane (PDMS) sponges is reported. The PDMS sponges are fabricated by the polymerization of the PDMS prepolymer and a curing agent in dimethicone using NaCl microparticles as the hard templates. The porous structure of the PDMS sponges is controllable simply by regulating the weight ratio of prepolymer to dimethicone and the size of the NaCl microparticles. The PDMS sponges feature high compressibility and stretchability, excellent superhydrophobicity/superoleophilicity, as well as high chemical and thermal stability. The PDMS sponge can completely recover its original shape even after 50 cycles of 90% strain. The elongation at breaking the sponge is as high as 97%. The PDMS sponge is superhydrophobic with a water contact angle of 151.5° but can be easily wetted by oils. The sponge also exhibits excellent repellency to corrosive aqueous liquids. The flexibility and superhydrophobicity of the sponge remain unchanged even after keeping in liquid nitrogen or at 250 °C for 24 h. Long-term immersion in various organics has no obvious influence on superhydrophobicity, oil absorbency, or weight of the sponge. The PDMS sponge can selectively absorb a large amount of floating oils on the water surface and heavy oils under the water, and furthermore, is reusable. Moreover, the PDMS sponge swells quickly after the adsorption of oils, which makes it a promising material for plugging oil leakages.
Abstract In this study, an ordered mesoporous silica modified with lanthanum oxide was synthesized using diatomite as silica source and applied for adsorption of phosphate from aqueous solution. By taking cost-effectiveness for practical application into consideration, the adsorbent with a theoretical La/SiO2 molar ratio of 0.2 (La0.2M41) possessed a promising performance. In the batch adsorption tests, the adsorbents with La2O3 loading possessed markedly enhanced adsorption capacities. Phosphate uptake by La0.2M41 was pH-dependent with the highest sorption capacities observed over a pH range of 3.0–6.0. Coexistent anions displayed an adverse effect on phosphate adsorption following the order of CO32− > F− > NO3− > Cl− > SO42−. In the kinetic study, phosphate adsorption onto La0.2M41 followed the pseudo-second-order equation better than the pseudo-first-order, suggesting chemisorption. The Langmuir isothermal model well described the adsorption isotherm data, showing a maximum adsorption capacity for phosphate of up to 263.16 mg/g at 298 K. In a real treated wastewater effluent with phosphate concentration of 2.5 mg P/L, La0.2M41 efficiently reduced the phosphate concentration to 28 µg P/L.