It has been suggested that renal denervation (RD) may attenuate left ventricular (LV) hypertrophy. However, the role that autophagy serves in this process is currently unclear. In the present study, utilizing a model of hypertension‑induced cardiac hypertrophy in spontaneous hypertensive rats, it was demonstrated that RD was significantly associated with a reduction in LV hypertrophy. Furthermore, a decrease in the myocardial mRNA of hypertrophy‑associated genes was demonstrated in RD rats compared with sham controls. In addition, RD in hypertension‑induced LV hypertrophy rats was associated with the attenuation of cellular autophagic response over activation at a physiological level. This was indicated by a reduction in the expression of Beclin‑1, autophagy related 9A and microtubule‑associated protein 1A/1B-light chain 3 II/I in RD rats to physiological levels that are observed in control rats. Furthermore, the number of autophagosomes was restored to physiological levels in the cardiomyocytes of RD rats. The results of the current study suggest that RD may attenuate LV hypertrophy via the regulation of autophagic responses.
Considering the trade-off relationship between brake specific fuel consumption (BSFC), combustion noise (CN) and NOx emission, it is a difficult task to optimize them simultaneously in a marine diesel engine. In order to overcome this problem, a novel genetic algorithm and improved chicken swarm optimization (GA-ICSO) hybrid algorithm was proposed, where the enhanced Levy flight and adaptive self-learning factor were introduced in this algorithm. Computational comparisons between GA-ICSO and other effective optimization algorithms were performed using four standard test functions, validating the improvements in both accuracy and stability for GA-ICSO. Furthermore, a predictive engine model based on a phenomenological approach was developed and validated. This model coupled the proposed algorithm for the optimization of a marine diesel engine. In the optimization process, five control parameters were selected as design variables, including injection timing (IT), intake cam phasing (ICP), intake valve closing (IVC), intake temperature and pressure. Results show that, a lower objective value can be obtained by GA-ICSO than other widely used optimization algorithms for all the operating conditions. Besides, by comparing the results between the optimal generations and baselines, it could be found that, under the condition of 50%, 75% and 100%load, CN is reduced by 10.7%, 4.9% and 3.9%, NOx is decreased by 15%, 31% and 33%, and BSFC is suppressed by 10.8%, 13.3% and 9.5%, respectively. Finally, heat release rates, noise spectrums, cylinder pressures and temperatures were all employed to discuss the optimization results of a marine diesel engine under different working conditions.
Abstract Objective: To study the effect of puerarin on electrophysiology using a hypertrophic cardiomyocyte (HC) model. Materials and methods: Human urine epithelial cells were used to generate the HC model (hiPSC-CM). Cardiomyocyte hypertrophy was induced by applying 10 nM endothelin-1 (ET-1). Effects of puerarin pre-treatment (PPr) and post-treatment (PPo) on action potential, sodium current (INa) activation and inactivation, and recovery following INa inactivation were tested using patch clamp electrophysiology. Results: Depolarization to repolarization 50% time (APD50) and repolarization 30% time (APD30) were significantly prolonged in the PPo and PPr groups compared with the controls. However, there were no significant differences in the action potential depolarization amplitude (APA) or the maximum depolarization velocity (Vmax) in phase 0. The PPr group had a slightly shortened APD90, and an extended APD50 and APD30, but did not exhibit any significant changes in stage A of APA and Vmax. The PPo group did not exhibit any significant changes in INa, while 12 h of PPr improved INa. However, puerarin did not significantly affect the activation, inactivation, or recovery of the sodium channel. Conclusions: Cardiomyocyte hypertrophy significantly decreased the Vmax of the action potential and the peak density of INa. PPr inhibited the decrease in Vmax and increased the peak density of INa. Thus, puerarin could be used to stabilize the electrophysiological properties of hypertrophic cardiomyocytes and reduce arrhythmias.
The loading rate dependence of the mechanical properties of metal-organic framework (MOF) crystals is key in determining their performance in many engineering applications, which, however, remains almost unexplored. Here, in situ nanoindentation experiments were conducted to investigate the impact of loading rate on mechanical properties of HKUST-1, a classic MOF. The Young's modulus and hardness of crystalline HKUST-1 are found to stay stable or decline with decreasing loading rate by creeping when the loading rate is below a particular speed, but they significantly decrease as the loading rate grows when it has higher magnitudes. Our molecular dynamics simulations indicate that the anomalous loading rate dependence of mechanical properties is attributed to the competition between the release and transfer of latent heat from the pressure-induced amorphous HKUST-1 because the increase in local temperature at large loading rates could induce the softening of HKUST-1 and the increase in the volume of transformed materials.
Abstract The hardness of metal‐organic frameworks (MOFs) is an important mechanical property metric measuring their resistance to the permanent plastic deformation. The hardness of most MOFs measured from nanoindentation experiments usually exhibits the similar unique indentation depth dependence feature, the mechanism of which still remains unclear. In order to explain the effect of the indentation depth on the hardness of MOFs, we conducted nanoindentation simulations on HKUST‐1 by using reactive molecular dynamics simulations. Our simulations reveal that the HKUST‐1 material near the indenter can transform from the parent crystalline phase to a new amorphous phase due to the high pressure generated, while its counterpart far from the indenter remains in the crystalline phase. By considering the crystalline‐amorphous interface in the energy analysis of MOFs, we derived an analytical expression of the hardness at different indentation depths. It is found that the interface effect can greatly increase the hardness of MOFs, as observed in nanoindentation simulations. Moreover, the proposed analytical expression can well explain the indentation depth‐dependent hardness of many MOF crystals measured in nanoindentation experiments. Overall, this work can provide a better understanding of the indentation depth dependence of the hardness of MOFs.
The combustion resonance is a focal point of the analysis of combustion and thermodynamic processes in diesel engines, such as detecting ‘knock’ and predicting combustion noise. Combustion resonant frequency is also significant for the estimation of in-cylinder bulk gas temperature and trapped mass. Normally, the resonant frequency information is contained in in-cylinder pressure signals. Therefore, the in-cylinder pressure signal processing is used for resonant frequency calculation. Conventional spectral analyses, such as FFT (Fast Fourier transform), are unsuitable for processing in-cylinder pressure signals because of its non-stationary characteristic. Other approaches to deal with non-stationary signals are Short-Time Fourier Transform (STFT) and Continue Wavelet Transform (CWT). However, the choice of size and shape of window for STFT and the selection of wavelet basis for CWT are totally empirical, which is the limit for precisely calculating the resonant frequency. In this study, an approach based on Empirical Wavelet Transform (EWT) and Hilbert Transform (HT) is proposed to process in-cylinder pressure signals and extract resonant frequencies. In order to decompose in-cylinder pressure spectrum precisely, the EWT are applied for separating the frequency band corresponding combustion resonance mode from other irrelevant modes adaptively. The signals containing combustion resonant mode is processed by HT, so that the instantaneous resonant frequency and amplitude can be extracted. Validation is performed by four in-cylinder pressure signals with different injection timing. And the effects of injection timing on resonant frequency are discussed.
In this article, ZnO thin films were deposited on different substrates, including glass, p-Si (100) and n-Si (111) by radio frequency (RF) magnetron sputtering technique. By changing substrate temperature and sputtering power, the influence of the sputtering rate was studied on structural properties of ZnO films. The film structural properties of the crystal phase, the surface morphology and the thickness were characterized by D/MAX-2200 XRD, JEOL JSM-6700F ESEM and AMBIOS XP-2 step meter respectively. The results showed that the films deposited on p-Si (100) substrates were preferred c-axis orientations, and their surfaces were smooth and compact when the substrate temperature was 300 Centigrade degrees.
The compressive properties of metal-organic framework (MOF) crystals are not only crucial for their densification but also key in determining their performance in many applications. We herein investigated the mechanical responses of a classic crystalline MOF, HKUST-1 by using in situ compression tests. A serrated flow accompanied by the unique strain avalanches was found in individual and contacting crystals before their final flattening or fracture with splitting cracks. The plastic flow with serrations is ascribed to the dynamic phase mixing due to the progressive and irreversible local phase transition in HKUST-1 crystals, as revealed by molecular dynamics and finite element simulations. Such pressure-induced phase coexistence in HKUST-1 crystals also induces a significant loading-history dependence of their Young's modulus. The observation of plastic avalanches in HKUST-1 crystals here not only expands our current understanding of the plasticity of MOF crystals but also unveils a novel mechanism for the avalanches and plastic flow in crystal plasticity.
The compressive properties of metal-organic framework (MOF) crystals are not only crucial for their densification process but also key in determining their performance in many applications. We herein investigated the mechanical responses of a classic crystalline MOF, HKUST-1, using in situ compression tests. A serrated flow accompanied by the unique strain avalanches was found in individual and contacting crystals before their final flattening or fracture with splitting cracks. The plastic flow with serrations is ascribed to the dynamic phase mixing due to the progressive and irreversible local phase transition in HKUST-1 crystals, as revealed by molecular dynamics and finite element simulations. Such pressure-induced phase coexistence in HKUST-1 crystals also induces a significant loading-history dependence of their Young's modulus. The observation of plastic avalanches in HKUST-1 crystals here not only expands our current understanding of the plasticity of MOF crystals but also unveils a novel mechanism for the avalanches and plastic flow in crystal plasticity.