Intramuscular fat (IMF) is an important indicator for evaluating meat quality. Breeds with high IMF content are often accompanied by high subcutaneous fat (SCF), severely affecting the meat rate of pigs. Studying the mechanisms of miRNAs related to lipogenesis and lipid metabolism has important implications for pig breeding. We constructed two small RNA libraries from intramuscular and subcutaneous fat to evaluate the patterns of lipogenesis in Laiwu pig, a Chinese breed. A total of 286 differentially expressed miRNAs (DEmiRNAs), including 193 known miRNA and 93 novel miRNAs, were identified from two types of adipose. GO and KEGG enrichment analysis for DEmiRNAs showed that their target genes involved in many adipogenesis and lipid metabolism biological processes and signaling pathways, such as Wnt signaling pathway,MAPK signaling pathway, Hippo signaling pathway, PI3K-Akt signaling pathway, Melanogenesis, Signaling pathways regulating pluripotency of stem cells and so on. Then, we constructed a miRNA-mRNA interaction network to find out which miRNAs were the key miRNAs of regulation in Wnt signaling pathway. In this pathway, miR-331-3p, miR-339-5p, miR-874 and novel346_mature target PPARD, WNT10B, RSPO3, WNT2B. This study provides a theoretical basis for further understanding the post-transcriptional regulation mechanism of meat quality formation and predicting and treating diseases caused by ectopic fat.
Abstract The function of long non-coding RNA (lncRNA) can be achieved through the regulation of target genes, and the deposition of fat is regulated by lncRNA. Fat has an important effect on meat quality. However, there are relatively few studies on lncRNAs in the subcutaneous adipose tissue of Duolang sheep and Small Tail Han sheep. In this study, RNA-Seq technology and bioinformatics methods were used to identify and analyze the lncRNA and mRNA in the subcutaneous adipose tissue of the two breeds of sheep. The results showed that 107 lnRNAs and 1329 mRNAs were differentially expressed. The differentially expressed genes and lncRNA target genes were significantly enriched in the biosynthesis of unsaturated fatty acids signaling pathway, fatty acid metabolism, adipocyte differentiation and other processes related to fat deposition. Among them, LOC105616076, LOC114118103, LOC105607837, LOC101116622, and LOC105603235 target FADS1, SCD, ELOVL6, HSD17B12 and HACD2, respectively. They play a key regulatory role in the biosynthesis of unsaturated fatty acids. This study lays a foundation for the study of the molecular mechanism of lncRNA on fat development, and has reference value for studying the differences in fat deposition between Duolang sheep and Small Tail Han sheep.
Researchers have shown that graphene oxide has a significant effect on plant and pathogen growth and development. To better understand the effect of graphene oxide on the resistance of Brassica napus L. to Sclerotinia sclerotiorum , Zhongshuang 11 was used to evaluate changes in the morphology and physiology after graphene oxide treatment. Detached leaf inoculation was used to detect S. sclerotiorum infection in rapeseed. The results indicated that treatment with a low concentration of graphene oxide had no significant effect on the growth of B. napus “Zhongshuang 11.” Graphene oxide inhibited S. sclerotiorum in PDA medium. Treatment with 15 mg/L graphene oxide for 8–24 h in seeds and 8–16 h in seedlings suppressed S. sclerotiorum growth compared to the control samples. These results demonstrate that a low concentration of graphene oxide did not harm the growth of B. napus but did enhance its resistance to S. sclerotiorum .
Intramuscular fat (IMF) deposition is a biological process that has a strong impact on the nutritional and sensorial properties of meat, with relevant consequences on human health. Pork loins determine the effects of marbling on the sensory attributes and meat quality properties, which differ among various pig breeds. This study explores the crosstalk of non-coding RNAs with mRNAs and analyzes the potential pathogenic role of IMF-associated competing endogenous RNA (ceRNA) in IMF tissues, which offer a framework for the functional validation of key/potential genes. A high-throughput whole-genome transcriptome analysis of IMF tissues from longissimus dorsi muscles of Large White (D_JN) and Laiwu (L_JN) pigs resulted in the identification of 283 differentially expressed circRNAs (DECs), including two key circRNAs (circRNA-23437, circRNA-08840) with potential binding sites for multiple miRNAs regulating the whole network. The potential ceRNA mechanism identified the DEC target miRNAs-mRNAs involved in lipid metabolism, fat deposition, meat quality, and metabolic syndrome via the circRNA-miRNA-mRNA network, concluding that ssc-mir-370 is the most important target miRNA shared by both key circRNAs. TGM2, SLC5A6, ECI1, FASN, PER1, SLC25A34, SOD1, and COL5A3 were identified as hub genes through an intensive protein-protein interaction (PPI) network analysis of target genes acquired from the ceRNA regulatory network. Functional enrichments, pathway examinations, and qRT-PCR analyses infer their implications in fat/cholesterol metabolism, insulin secretion, and fatty acid biosynthesis. Here, circRNAs and miRNA sequencing accompanied by computational techniques were performed to analyze their expressions in IMF tissues from the longissimus dorsi muscles of two pig breeds. Their target gene evolutionary trajectories, expression profiling, functional enrichments, subcellular localizations, and structural advances with high-throughput protein modeling, following genomic organizations, will provide new insights into the underlying molecular mechanisms of adipocyte differentiation and IMF deposition and a much-needed qualitative framework for future research to improve meat quality and its role as a biomarker to treat lipid metabolic syndromes.