As an important type of interplant competition, line-spacing shrinkage and row-spacing expansion (LSRE) can increase the number of tillers and improve resource utilization efficiency in wheat. Wheat tillering is closely related to various phytohormones. However, it is unclear whether LSRE regulates phytohormones and their relationship to tillering and wheat yield. This study evaluated tillering characteristics, phytohormone content in tiller nodes at the pre-winter stage, and grain yield factors for the winter wheat variety Malan1. We used a two-factor randomized block trial design with two sowing spacings of 15 cm (15RS, conventional treatment) and 7.5 cm (7.5RS, LSRE treatment) at the same density and three sowing-date groups (SD1, SD2, and SD3). LSRE significantly promoted wheat tillering and biomass at the pre-winter stage (average increases of 14.5% and 20.9% in the three sowing-date groups, respectively) and shortened the accumulated temperature required for a single tiller. Changes in the levels of phytohormones, including decreased gibberellin and indole acetic acid and increased zeatin riboside and strigolactones, were determined by high-performance liquid chromatography and were shown to be responsible for the tillering process under LSRE treatment in winter wheat. LSRE treatment can improve crop yield by increasing the number of spikes per unit area and grain weight. Our results clarified the changes in tillering and phytohormones content of winter wheat under LSRE treatment and their correlation with grain yield. This study also provides insights into the physiological mechanisms of alleviating inter-plant competition to improve crop yield.
Abstract Cold shock proteins (CSPs) enhance acclimatization of bacteria to adverse environmental circumstances. The Escherichia coli CSP genes CspA and CspB were modified to plant-preferred codon sequences and named as SeCspA and SeCspB . Overexpression of exogenous SeCspA and SeCspB in transgenic Arabidopsis lines increased germination rates, survival rates, and increased primary root length compared to control plants under drought and salt stress. Investigation of several stress-related parameters in SeCspA and SeCspB transgenic wheat lines indicated that these lines possessed stress tolerance characteristics, including lower malondialdehyde (MDA) content, lower water loss rates, lower relative Na + content, and higher chlorophyll content and proline content than the control wheat plants under drought and salt stresses. RNA-seq and qRT-PCR expression analysis showed that overexpression of SeCsp could enhance the expression of stress-responsive genes. The field experiments showed that the SeCspA transgenic wheat lines had great increases in the 1000-grain weight and grain yield compared to the control genotype under drought stress conditions. Significant differences in the stress indices revealed that the SeCspA transgenic wheat lines possessed significant and stable improvements in drought tolerance over the control plants. No such improvement was observed for the SeCspB transgenic lines under field conditions. Our results indicated that SeCspA conferred drought tolerance and improved physiological traits in wheat plants.
Phosphorus deficiency is a major limiting factor for crop yield worldwide. Previous studies revealed that PHR1 and it homologues play a key role in regulating the phosphate starvation response in plants. However, the function of PHR homologues in common wheat (Triticum aestivum) is still not fully understood. The aim of the study was to characterize the function of PHR1 genes in regulating phosphate signalling and plant growth in wheat. Wheat transgenic lines over-expressing a wheat PHR1 gene were generated and evaluated under phosphorus-deficient and -sufficient conditions in hydroponic culture, a soil pot trial and two field experiments. Three PHR1 homologous genes Ta-PHR1-A1, B1 and D1 were isolated from wheat, and the function of Ta-PHR1-A1 was analysed. The results showed that Ta-PHR1-A1 transcriptionally activated the expression of Ta-PHT1.2 in yeast cells. Over-expressing Ta-PHR1-A1 in wheat upregulated a subset of phosphate starvation response genes, stimulated lateral branching and improved phosphorus uptake when the plants were grown in soil and in nutrient solution. The data from two field trials demonstrated that over-expressing Ta-PHR1-A1 increased grain yield by increasing grain number per spike. TaPHR1 is involved in phosphate signalling in wheat, and was valuable in molecular breeding of crops, with improved phosphorus use efficiency and yield performance.
A rapid SDS-PAGE method of high molecular weight glutenin subunit(HMW-GS) of wheat was studied and it was proved to be quick,precise and stable.This method is suitable to detecting large numbers of wheat samples.
Genetically enhancing drought tolerance and nutrient use efficacy enables sustainable and stable wheat production in drought-prone areas exposed to water shortages and low soil fertility, due to global warming and declining natural resources. In this study, wheat plants, exhibiting improved drought tolerance and N-use efficacy, were developed by introducing GmTDN1, a gene encoding a DREB-like transcription factor, into two modern winter wheat varieties, cv Shi4185 and Jimai22. Overexpressing GmTDN1 in wheat resulted in significantly improved drought and low-N tolerance under drought and N-deficient conditions in the greenhouse. Field trials conducted at three different locations over a period of 2-3 consecutive years showed that both Shi4185 and Jimai22 GmTDN1 transgenic lines were agronomically superior to wild-type plants, and produced significantly higher yields under both drought and N-deficient conditions. No yield penalties were observed in these transgenic lines under normal well irrigation conditions. Overexpressing GmTDN1 enhanced photosynthetic and osmotic adjustment capacity, antioxidant metabolism, and root mass of wheat plants, compared to those of wild-type plants, by orchestrating the expression of a set of drought stress-related genes as well as the nitrate transporter, NRT2.5. Furthermore, transgenic wheat with overexpressed NRT2.5 can improve drought tolerance and nitrogen (N) absorption, suggesting that improving N absorption in GmTDN1 transgenic wheat may contribute to drought tolerance. These findings may lead to the development of new methodologies with the capacity to simultaneously improve drought tolerance and N-use efficacy in cereal crops to ensure sustainable agriculture and global food security.