Chickens are the natural host of Newcastle disease virus (NDV) and avian influenza virus (AIV). The discovery that the RIG-I gene, the primary RNA virus pattern recognition receptor (PRR) in mammals, is naturally absent in chickens has directed attention to studies of chicken RNA PRRs and their functions in antiviral immune responses. Here, we identified Asp-Glu-Ala-Asp (DEAD)-box helicase 1 (DDX1) as an essential RNA virus PRR in chickens and investigated its functions in anti-RNA viral infections. The chDDX1 gene was cloned, and cross-species sequence alignment and phylogenetic tree analyses revealed high conservation of DDX1 among vertebrates. A quantitative RT-PCR showed that chDDX1 mRNA are widely expressed in different tissues in healthy chickens. In addition, chDDX1 was significantly upregulated after infection with AIV, NDV, or GFP-expressing vesicular stomatitis virus (VSV-GFP). Overexpression of chDDX1 in DF-1 cells induced the expression of IFN-β, IFN-stimulated genes (ISGs), and proinflammatory cytokines; it also inhibited NDV and VSV replications. The knockdown of chDDX1 increased the viral yield of NDV and VSV and decreased the production of IFN-β, which was induced by RNA analog polyinosinic-polycytidylic acid (poly[I:C]), by AIV, and by NDV. We used a chicken IRF7 (chIRF7) knockout DF-1 cell line in a series of experiments to demonstrate that chDDX1 activates IFN signaling via the chIRF7 pathway. Finally, an in-vitro pulldown assay showed a strong and direct interaction between poly(I:C) and the chDDX1 protein, indicating that chDDX1 may act as an RNA PRR during IFN activation. In brief, our results suggest that chDDX1 is an important mediator of IFN-β and is involved in RNA- and RNA virus-mediated chDDX1-IRF7-IFN-β signaling pathways.
Abstract IFN regulatory factor (IRF) 3 has been identified as the most critical regulator of both RNA and DNA virus–induced IFN production in mammals. However, ambiguity exists in research on chicken IRFs; in particular IRF3 seems to be missing in chickens, making IFN regulation in chickens unclear. In this study, we comprehensively investigated the potential IFN-related IRFs in chickens and showed that IRF7 is the most critical IFN-β regulator in chickens. With a chicken IRF7 (chIRF7) knockout DF-1 cell line, we conducted a series of experiments to demonstrate that chIRF7 is involved in both chicken STING (chSTING)- and chicken MAVS (chMAVS)-mediated IFN-β regulation in response to DNA and RNA viral infections, respectively. We further examined the mechanisms of chIRF7 activation by chSTING. We found that chicken TBK1 (chTBK1) is indispensable for chIRF7 activation by chSTING as well as that chSTING interacts with both chIRF7 and chTBK1 to function as a scaffold in chIRF7 activation by chTBK1. More interestingly, we discovered that chSTING mediates the activation of chIRF7 through a conserved SLQxSyS motif. In short, we confirmed that although IRF3 is missing in chickens, they employ IRF7 to reconstitute corresponding IFN signaling to respond to both DNA and RNA viral infections. Additionally, we uncovered a mechanism of chIRF7 activation by chSTING. The results will enrich and deepen our understanding of the regulatory mechanisms of the chicken IFN system.
Abstract Innate immunity plays an essential role in preventing the invasion of pathogenic microorganisms. However, innate immunity is a double-edged sword, whose excessive activation is detrimental to immune homeostasis and even leads to a “cytokine storm” of the infected host. The host develops a series of negative regulatory mechanisms to balance the immune response. Here, we report a negative regulatory mechanism of chicken innate immunity mediated by miRNA. In the GEO database, we found that miR-126-5p was markedly up-regulated in chickens infected by RNA viruses. Upregulation of miR-126-5p by RNA virus was then further shown via both a cell model and in vivo tests. Overexpression of miR-126-5p significantly inhibited the expression of interferon and inflammatory cytokine-related genes induced by RNA viruses. The opposite result was achieved after the knockdown of miR-126-5p expression. Bioinformatics analysis identified TRAF3 as candidate target gene of miR-126-5p. Experimentally, miR-126-5p can target TRAF3, as shown by the effects of miR-126-5p on the endogenous expression of TRAF3, and by the TRAF3 3'UTR driven luciferase reporter assay. Furthermore, we demonstrated that miR-126-5p negatively regulated innate immunity by blocking the MAVS-TRAF3-TBK1 axis, with a co-expression assay. Overall, our results suggest that miR-126-5p is involved in the negative regulation of chicken innate immunity, which might contribute to maintaining immune balance.
Abstract Background Innate immunity plays an essential role in preventing the invasion of pathogenic microorganisms. However, innate immunity is a double-edged sword, whose excessively activated is detrimental to immune homeostasis and even leads to "cytokine storm" of the infected host. A series of negative regulatory mechanisms are developed by the host to balance the immune response. Here, we report a negative regulatory mechanism of chicken innate immunity mediated by miRNA. Results In this study we found that the miR-126-5p is markedly up-regulated in RNA virus infected chickens in GEO database. Then, the upregulation of the miR-126-5p by RNA virus was further verified via both cell model and in vivo test. Overexpression of miR-126-5p significantly inhibits the expression of interferon related genes and inflammatory cytokines evoked by RNA virus. The opposite result was achieved after knocking down miR-126-5p expression. Bioinformatics analysis indicated TRAF3 as the candidate target gene of miR-126-5p, and experimental evidence, such as the effects of miR-126-5p on the endogenous expression of TRAF3, and the effect of miR-126-5p on TRAF3 3'UTR drove luciferase reporter assay, were provided to further verify that miR-126-5p targets TRAF3. Furthermore, we demonstrated that miR-126-5p negatively regulates innate immunity by blocking the MAVS-TRAF3-TBK1 axis, with co-expression assay. Conclusion Our results suggest that miR-126-5p is involved in the negative regulation of the chicken innate immunity, which might contribute to maintaining immune balance.
The stimulator of interferon genes (STING) protein has been shown to play a pivotal role in response to both cytosolic RNA and dsDNA to elicit interferon (IFN) production in mammals. However, the role of duck STING (DuSTING) in antiviral innate immunity, especially in anti-RNA virus infection, has yet to be elucidated. In this study, the function of DuSTING in IFN induction and its role in anti-RNA virus infections were studied. DuSTING was amplified via real-time polym erase chain reaction (RT-PCR) from Pekin duck, showing that its cDNA sequence contains an open reading frame (ORF) of 1149 bp and encodes 382 amino acids (aa). Sequence alignment showed that DuSTING protein shares 71.1%, 43.4%, and 33.3% identity with chickens, humans, and zebra fish, respectively. Overexpression of DuSTING in duck embryo fibroblasts (DEFs) strongly activated IFN-β promotor activity. Deletion mutant analysis revealed that the first 42 aa containing the first transmembrane (TM) domains and the last 32 aa containing a part of the C-terminal tail (CTT) are essential for its IFN-β activation. In vitro experiments showed that the mRNA levels of DuSTING and IFNs were all upregulated when the DEFs were infected with H9N2 avian influenza virus (AIV) SH010, while overexpression of DuSTING inhibited the replication of this virus. In vivo studies showed that DuSTING mRNA was widely expressed in different tissues, and was up-regulated in the spleen and lung of ducks challenged with SH010. In conclusion, our results indicate that DuSTING is an essential IFN mediator and plays a role in anti-RNA virus innate immunity.