Power efficiency and stability are critical for wearable ECG application. The paper presents a Pulse-Width-Modulation (PWM) voltage type DC-DC converter, which has a small area of 0.32 mm2 on active chip, output voltage range of 0.8V to 3.5V, output power up to 7.5 mW, and peak efficiency of 95.8%. The simulation results show that the output voltage of the system is 1.8V, the output current is 4mA, the ripple voltage is 13mV and the efficiency is 86.1%, which meets the requirements of a presented system. The circuit will be fabricated by the SMIC in the near future with 0.18 μm Bipolar-CMOS-DMOS (BCD) process.
To compare ovarian response to hyperstimulation during IVF between patients who did and did not undergo salpingectomy.Meta-analysis.University-affiliated teaching hospital.Patients undergoing IVF who did and did not undergo salpingectomy.None.The total dose of gonadotropin, duration of hyperstimulation, E level on the day of hCG injection, number of oocytes retrieved, and basal FSH level were evaluated because these reflect ovarian response.Twenty-five studies were identified through searches conducted on PubMed, Cochrane Libraries, Ovid, Web of Science, Science Direct, China National Knowledge Infrastructure, and Wanfang Database through October 2015. The 25 studies included 1,935 patients who underwent salpingectomy and 2,893 who did not. Fixed-effects and random-effects models were used to calculate the overall combined risk estimates. The results of the meta-analysis suggest that salpingectomy impairs ovarian response to hyperstimulation. The total dose of gonadotropin was significantly increased after combined salpingectomy (inverse variance [IV] 0.10 [95% confidence interval (CI) 0.03, 0.16]; I(2) = 30%) and bilateral salpingectomy (IV [95% CI] 0.23 [0.09, 0.37]; I(2) = 36%). The number of oocytes retrieved decreased significantly after unilateral salpingectomy (IV [95% CI] -0.17 [-0.27, -0.06]; I(2) = 31%) and bilateral salpingectomy (IV [95% CI] -0.20 [-0.32, -0.08]; I(2) = 48%). In addition, a statistically significant reduction was found between the number of oocytes retrieved from the ipsilateral and contralateral ovary (IV [95% CI] 0.25 [-0.40, -0.10]; I(2) = 48%). Finally, bilateral salpingectomy may lead to an increase in the FSH level (IV [95% CI] 0.39 [0.20, 0.59]; I(2) = 0%). Heterogeneity moderators were identified by performing subgroup and sensitivity analyses. No evidence of publication bias was observed.This meta-analysis indicated that salpingectomy may impair ovarian response to hyperstimulation during IVF. Further high-quality research is needed to confirm our findings and to develop therapeutic methods that are alternatives to salpingectomy for maternal well-being.
Abstract Ethoxysanguinarine (ESG) is a benzophenanthridine alkaloid extracted from plants of Papaveraceae family, such as Macleaya cordata (Willd) R. Br. The anti‐cancer activity of ESG has been rarely reported. In this study, we investigated the anti‐breast cancer effect of ESG and its underlying mechanism. MTT assay and flow cytometry analysis showed that ESG inhibited the viability and induced apoptosis in MCF7 and MDA‐MB‐231 human breast cancer cells. Western blot revealed that ESG triggered intrinsic and extrinsic apoptotic pathways, as evidenced by the activation of caspase‐8, caspase‐9 and caspase‐3. ESG attenuated breast cancer cell migration and invasion through Hakai/E‐cadherin/N‐cadherin. Moreover, Hakai knockdown sensitized ESG‐triggered viability and motility inhibition, suggesting that Hakai mediated the anti‐breast cancer effect of ESG. In addition, ESG potentiated the anti‐cancer activity of docetaxel (DTX) in breast cancer cells. Overall, our findings demonstrate that ESG exhibits outstanding pro‐apoptosis and anti‐metastasis effects on breast cancer via a mechanism related to Hakai‐related signaling pathway.
Polar residues within the transmembrane domains (TMs) of G protein-coupled receptors have been implicated to be important determinants of receptor function. We have identified mutations at two polar sites in the TM regions of the rat parathyroid hormone (PTH)/PTH-related peptide receptor, Arg-233 in TM 2 and Gln-451 in TM 7, that caused 17-200-fold reductions in the binding affinity of the agonist peptide PTH-(1Jüppner H. Abou-Samra A.-B. Freeman M. Kong X.-F. Schipani E. Richards J. Kolakowski Jr., L.F. Hock J. Potts Jr., J.T. Kronenberg H.M. Segre G.V. Science. 1991; 254: 1024-1026Crossref PubMed Scopus (1120) Google Scholar, 2Abou-Samra A.B. Jüppner H. Force T. Freeman M. Kong X.F. Schipani E. Urena P. Richards J. Bonventre J.V. Potts Jr., J.T. Kronenberg H.M. Segre G.V. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 2732-2736Crossref PubMed Scopus (984) Google Scholar, 3Jüppner H. Schipani E. Bringhurst F.R. McClure I. Keutmann H.T. Potts Jr, Kronenberg H.M. Abou-Samra A.B. Segre G.V. Gardella T. Endocrinology. 1994; 134: 879-884Crossref PubMed Scopus (118) Google Scholar, 4Lee C. Gardella T. Abou-Samra A.-B. Nussbaum S. Segre G. Potts J. Kronenberg H. Juppner H. Endocrinology. 1994; 135: 1488-1495Crossref PubMed Scopus (113) Google Scholar, 5Gardella T.J. Jüppner H. Wilson A.K. Keutmann H.T. Abou-Samra A.B. Segre G.V. Bringhurst F.R. Potts J.T. Nussbaum S.R. Kronenberg H.M. Endocrinology. 1994; 135: 1186-1194Crossref PubMed Scopus (70) Google Scholar, 6Holtmann M. Hadac E. Miller L. J. Biol. Chem. 1995; 270: 14394-14398Abstract Full Text Full Text PDF PubMed Scopus (164) Google Scholar, 7Stroop S. Kuestner R. Serwold T. Chen L. Moore E. Biochemistry. 1994; 34: 1050-1057Crossref Scopus (92) Google Scholar, 8Buggy J.J. Livingston J.N. Rabin D.U. Yoo-Warren H. J. Biol. Chem. 1995; 270: 7474-7478Abstract Full Text Full Text PDF PubMed Scopus (63) Google Scholar, 9Baldwin J. EMBO J. 1993; 12: 1693-1703Crossref PubMed Scopus (875) Google Scholar, 10Strader C.D. Sigal I.S. Register R.B. Candelore M.R. Rands E. Dixon R.A. Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 4384-4388Crossref PubMed Scopus (344) Google Scholar, 11Strader C.D. Gaffney T. Sugg E.E. Candelore M.R. Keys R. Patchett A.A. Dixon R.A. J. Biol. Chem. 1991; 266: 5-8Abstract Full Text PDF PubMed Google Scholar, 12Huang R. Yu H. Strader C. Fong T. Biochemistry. 1994; 33: 3007-3013Crossref PubMed Scopus (134) Google Scholar, 13Rosenkilde M.M. Cahir M. Gether U. Hjorth S.A. Schwartz T.W. J. Biol. Chem. 1994; 269: 28160-28164Abstract Full Text PDF PubMed Google Scholar, 14Krystek Jr., S.R. Patel P. Rose P. Fisher S. Kienzle B. Lach D. Liu E. Lynch J. Novotny J. Webb M. J. Biol. Chem. 1994; 269: 12383-12386Abstract Full Text PDF PubMed Google Scholar, 15Lee J. Elliott J. Sutiphong J. Friesen W. Ohlstein E. Stadel J. Gleason J. Peishoff C. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 7164-7168Crossref PubMed Scopus (38) Google Scholar, 16Hunyady L. Bor M. Balla T. Catt K. J. Biol. Chem. 1995; 270: 9702-9705Abstract Full Text Full Text PDF PubMed Scopus (58) Google Scholar, 17Ji I. Ji T. J. Biol. Chem. 1991; 266: 14953-14957Abstract Full Text PDF PubMed Google Scholar, 18Henderson R. Balswin J.M. Ceska T.A. Zemlin F. Beckman E. Downing K.H. J. Mol. Biol. 1990; 213: 899-929Crossref PubMed Scopus (2500) Google Scholar, 19Schertler G. Villa C. Henderson R. Nature. 1995; 362: 770-772Crossref Scopus (704) Google Scholar, 20Suryanarayana S. von Zastrow M. Kobilka B.K. J. Biol. Chem. 1992; 267: 21991-21994Abstract Full Text PDF PubMed Google Scholar, 21Sealfon S. Chi L. Ebersole B. Rodic V. Zhang D. Ballesteros J. Weinstein H. Mol. Pharmacol. 1995; 270: 16683-16688Google Scholar, 22Zhou W. Flanagan C. Ballesteros J. Konvicka K. Davidson J. Weinstein H. Millar R. Sealfon S. Mol. Pharmacol. 1994; 45: 165-170PubMed Google Scholar, 23Mizobe T. Maze M. Lam V. Suryanarayana S. von Zastrow M. Kobilka B.K. J. Biol. Chem. 1996; 271: 2387-2389Abstract Full Text Full Text PDF PubMed Scopus (75) Google Scholar, 24Kolodziej P.A. Young R.A. Methods Enzymol. 1991; 194: 508-519Crossref PubMed Scopus (423) Google Scholar, 25Kunkel T.A. Proc. Natl. Acad. Sci. U. S. A. 1985; 82: 488-492Crossref PubMed Scopus (4878) Google Scholar, 26Seed B. Aruffo A. Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 3365-3369Crossref PubMed Scopus (787) Google Scholar, 27Lee C. Luck M. Juppner H. Potts J. Kronenberg H. Gardella T. Mol. Endocrinol. 1995; 9: 1269-1278Crossref PubMed Google Scholar, 28Berridge M. Dawson R. Downes C. Heslop J. Irvine R. Biochem. J. 1983; 212: 473-482Crossref PubMed Scopus (1537) Google Scholar, 29Iida-Klein A. Guo J. Xie L. Jüppner H. Potts Jr., J.T. Kronenberg H.M. Bringhurst F. Abou-Samra A.B. Segre G.V. J. Biol. Chem. 1995; 270: 8458-8465Abstract Full Text Full Text PDF PubMed Scopus (86) Google Scholar, 30Goltzman D. Peytremann A. Callahan E. Tregear G.W. Potts Jr., J.T. J. Biol. Chem. 1975; 250: 3199-3203Abstract Full Text PDF PubMed Google Scholar, 31Rost B. Casadio R. Fariselli P. Sander C. Prot. Sci. 1995; 4: 521-533Crossref PubMed Scopus (640) Google Scholar, 32De Lean A. Stadel J. Lefkowitz R. J. Biol. Chem. 1980; 255: 7108-7117Abstract Full Text PDF PubMed Google Scholar, 33Samama P. Cotecchia S. Costa T. Lefkowitz R. J. Biol. Chem. 1993; 268: 4625-4636Abstract Full Text PDF PubMed Google Scholar, 34Mayo K.E. Mol. Endocrinol. 1992; 6: 1734-1744Crossref PubMed Scopus (221) Google Scholar) without affecting the binding affinity of the antagonist/partial agonist PTH-(3Jüppner H. Schipani E. Bringhurst F.R. McClure I. Keutmann H.T. Potts Jr, Kronenberg H.M. Abou-Samra A.B. Segre G.V. Gardella T. Endocrinology. 1994; 134: 879-884Crossref PubMed Scopus (118) Google Scholar, 4Lee C. Gardella T. Abou-Samra A.-B. Nussbaum S. Segre G. Potts J. Kronenberg H. Juppner H. Endocrinology. 1994; 135: 1488-1495Crossref PubMed Scopus (113) Google Scholar, 5Gardella T.J. Jüppner H. Wilson A.K. Keutmann H.T. Abou-Samra A.B. Segre G.V. Bringhurst F.R. Potts J.T. Nussbaum S.R. Kronenberg H.M. Endocrinology. 1994; 135: 1186-1194Crossref PubMed Scopus (70) Google Scholar, 6Holtmann M. Hadac E. Miller L. J. Biol. Chem. 1995; 270: 14394-14398Abstract Full Text Full Text PDF PubMed Scopus (164) Google Scholar, 7Stroop S. Kuestner R. Serwold T. Chen L. Moore E. Biochemistry. 1994; 34: 1050-1057Crossref Scopus (92) Google Scholar, 8Buggy J.J. Livingston J.N. Rabin D.U. Yoo-Warren H. J. Biol. Chem. 1995; 270: 7474-7478Abstract Full Text Full Text PDF PubMed Scopus (63) Google Scholar, 9Baldwin J. EMBO J. 1993; 12: 1693-1703Crossref PubMed Scopus (875) Google Scholar, 10Strader C.D. Sigal I.S. Register R.B. Candelore M.R. Rands E. Dixon R.A. Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 4384-4388Crossref PubMed Scopus (344) Google Scholar, 11Strader C.D. Gaffney T. Sugg E.E. Candelore M.R. Keys R. Patchett A.A. Dixon R.A. J. Biol. Chem. 1991; 266: 5-8Abstract Full Text PDF PubMed Google Scholar, 12Huang R. Yu H. Strader C. Fong T. Biochemistry. 1994; 33: 3007-3013Crossref PubMed Scopus (134) Google Scholar, 13Rosenkilde M.M. Cahir M. Gether U. Hjorth S.A. Schwartz T.W. J. Biol. Chem. 1994; 269: 28160-28164Abstract Full Text PDF PubMed Google Scholar, 14Krystek Jr., S.R. Patel P. Rose P. Fisher S. Kienzle B. Lach D. Liu E. Lynch J. Novotny J. Webb M. J. Biol. Chem. 1994; 269: 12383-12386Abstract Full Text PDF PubMed Google Scholar, 15Lee J. Elliott J. Sutiphong J. Friesen W. Ohlstein E. Stadel J. Gleason J. Peishoff C. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 7164-7168Crossref PubMed Scopus (38) Google Scholar, 16Hunyady L. Bor M. Balla T. Catt K. J. Biol. Chem. 1995; 270: 9702-9705Abstract Full Text Full Text PDF PubMed Scopus (58) Google Scholar, 17Ji I. Ji T. J. Biol. Chem. 1991; 266: 14953-14957Abstract Full Text PDF PubMed Google Scholar, 18Henderson R. Balswin J.M. Ceska T.A. Zemlin F. Beckman E. Downing K.H. J. Mol. Biol. 1990; 213: 899-929Crossref PubMed Scopus (2500) Google Scholar, 19Schertler G. Villa C. Henderson R. Nature. 1995; 362: 770-772Crossref Scopus (704) Google Scholar, 20Suryanarayana S. von Zastrow M. Kobilka B.K. J. Biol. Chem. 1992; 267: 21991-21994Abstract Full Text PDF PubMed Google Scholar, 21Sealfon S. Chi L. Ebersole B. Rodic V. Zhang D. Ballesteros J. Weinstein H. Mol. Pharmacol. 1995; 270: 16683-16688Google Scholar, 22Zhou W. Flanagan C. Ballesteros J. Konvicka K. Davidson J. Weinstein H. Millar R. Sealfon S. Mol. Pharmacol. 1994; 45: 165-170PubMed Google Scholar, 23Mizobe T. Maze M. Lam V. Suryanarayana S. von Zastrow M. Kobilka B.K. J. Biol. Chem. 1996; 271: 2387-2389Abstract Full Text Full Text PDF PubMed Scopus (75) Google Scholar, 24Kolodziej P.A. Young R.A. Methods Enzymol. 1991; 194: 508-519Crossref PubMed Scopus (423) Google Scholar, 25Kunkel T.A. Proc. Natl. Acad. Sci. U. S. A. 1985; 82: 488-492Crossref PubMed Scopus (4878) Google Scholar, 26Seed B. Aruffo A. Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 3365-3369Crossref PubMed Scopus (787) Google Scholar, 27Lee C. Luck M. Juppner H. Potts J. Kronenberg H. Gardella T. Mol. Endocrinol. 1995; 9: 1269-1278Crossref PubMed Google Scholar, 28Berridge M. Dawson R. Downes C. Heslop J. Irvine R. Biochem. J. 1983; 212: 473-482Crossref PubMed Scopus (1537) Google Scholar, 29Iida-Klein A. Guo J. Xie L. Jüppner H. Potts Jr., J.T. Kronenberg H.M. Bringhurst F. Abou-Samra A.B. Segre G.V. J. Biol. Chem. 1995; 270: 8458-8465Abstract Full Text Full Text PDF PubMed Scopus (86) Google Scholar, 30Goltzman D. Peytremann A. Callahan E. Tregear G.W. Potts Jr., J.T. J. Biol. Chem. 1975; 250: 3199-3203Abstract Full Text PDF PubMed Google Scholar, 31Rost B. Casadio R. Fariselli P. Sander C. Prot. Sci. 1995; 4: 521-533Crossref PubMed Scopus (640) Google Scholar, 32De Lean A. Stadel J. Lefkowitz R. J. Biol. Chem. 1980; 255: 7108-7117Abstract Full Text PDF PubMed Google Scholar, 33Samama P. Cotecchia S. Costa T. Lefkowitz R. J. Biol. Chem. 1993; 268: 4625-4636Abstract Full Text PDF PubMed Google Scholar, 34Mayo K.E. Mol. Endocrinol. 1992; 6: 1734-1744Crossref PubMed Scopus (221) Google Scholar). When mutations at the TM 2 and TM 7 sites were combined, binding affinity for PTH-(1Jüppner H. Abou-Samra A.-B. Freeman M. Kong X.-F. Schipani E. Richards J. Kolakowski Jr., L.F. Hock J. Potts Jr., J.T. Kronenberg H.M. Segre G.V. Science. 1991; 254: 1024-1026Crossref PubMed Scopus (1120) Google Scholar, 2Abou-Samra A.B. Jüppner H. Force T. Freeman M. Kong X.F. Schipani E. Urena P. Richards J. Bonventre J.V. Potts Jr., J.T. Kronenberg H.M. Segre G.V. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 2732-2736Crossref PubMed Scopus (984) Google Scholar, 3Jüppner H. Schipani E. Bringhurst F.R. McClure I. Keutmann H.T. Potts Jr, Kronenberg H.M. Abou-Samra A.B. Segre G.V. Gardella T. Endocrinology. 1994; 134: 879-884Crossref PubMed Scopus (118) Google Scholar, 4Lee C. Gardella T. Abou-Samra A.-B. Nussbaum S. Segre G. Potts J. Kronenberg H. Juppner H. Endocrinology. 1994; 135: 1488-1495Crossref PubMed Scopus (113) Google Scholar, 5Gardella T.J. Jüppner H. Wilson A.K. Keutmann H.T. Abou-Samra A.B. Segre G.V. Bringhurst F.R. Potts J.T. Nussbaum S.R. Kronenberg H.M. Endocrinology. 1994; 135: 1186-1194Crossref PubMed Scopus (70) Google Scholar, 6Holtmann M. Hadac E. Miller L. J. Biol. Chem. 1995; 270: 14394-14398Abstract Full Text Full Text PDF PubMed Scopus (164) Google Scholar, 7Stroop S. Kuestner R. Serwold T. Chen L. Moore E. Biochemistry. 1994; 34: 1050-1057Crossref Scopus (92) Google Scholar, 8Buggy J.J. Livingston J.N. Rabin D.U. Yoo-Warren H. J. Biol. Chem. 1995; 270: 7474-7478Abstract Full Text Full Text PDF PubMed Scopus (63) Google Scholar, 9Baldwin J. EMBO J. 1993; 12: 1693-1703Crossref PubMed Scopus (875) Google Scholar, 10Strader C.D. Sigal I.S. Register R.B. Candelore M.R. Rands E. Dixon R.A. Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 4384-4388Crossref PubMed Scopus (344) Google Scholar, 11Strader C.D. Gaffney T. Sugg E.E. Candelore M.R. Keys R. Patchett A.A. Dixon R.A. J. Biol. Chem. 1991; 266: 5-8Abstract Full Text PDF PubMed Google Scholar, 12Huang R. Yu H. Strader C. Fong T. Biochemistry. 1994; 33: 3007-3013Crossref PubMed Scopus (134) Google Scholar, 13Rosenkilde M.M. Cahir M. Gether U. Hjorth S.A. Schwartz T.W. J. Biol. Chem. 1994; 269: 28160-28164Abstract Full Text PDF PubMed Google Scholar, 14Krystek Jr., S.R. Patel P. Rose P. Fisher S. Kienzle B. Lach D. Liu E. Lynch J. Novotny J. Webb M. J. Biol. Chem. 1994; 269: 12383-12386Abstract Full Text PDF PubMed Google Scholar, 15Lee J. Elliott J. Sutiphong J. Friesen W. Ohlstein E. Stadel J. Gleason J. Peishoff C. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 7164-7168Crossref PubMed Scopus (38) Google Scholar, 16Hunyady L. Bor M. Balla T. Catt K. J. Biol. Chem. 1995; 270: 9702-9705Abstract Full Text Full Text PDF PubMed Scopus (58) Google Scholar, 17Ji I. Ji T. J. Biol. Chem. 1991; 266: 14953-14957Abstract Full Text PDF PubMed Google Scholar, 18Henderson R. Balswin J.M. Ceska T.A. Zemlin F. Beckman E. Downing K.H. J. Mol. Biol. 1990; 213: 899-929Crossref PubMed Scopus (2500) Google Scholar, 19Schertler G. Villa C. Henderson R. Nature. 1995; 362: 770-772Crossref Scopus (704) Google Scholar, 20Suryanarayana S. von Zastrow M. Kobilka B.K. J. Biol. Chem. 1992; 267: 21991-21994Abstract Full Text PDF PubMed Google Scholar, 21Sealfon S. Chi L. Ebersole B. Rodic V. Zhang D. Ballesteros J. Weinstein H. Mol. Pharmacol. 1995; 270: 16683-16688Google Scholar, 22Zhou W. Flanagan C. Ballesteros J. Konvicka K. Davidson J. Weinstein H. Millar R. Sealfon S. Mol. Pharmacol. 1994; 45: 165-170PubMed Google Scholar, 23Mizobe T. Maze M. Lam V. Suryanarayana S. von Zastrow M. Kobilka B.K. J. Biol. Chem. 1996; 271: 2387-2389Abstract Full Text Full Text PDF PubMed Scopus (75) Google Scholar, 24Kolodziej P.A. Young R.A. Methods Enzymol. 1991; 194: 508-519Crossref PubMed Scopus (423) Google Scholar, 25Kunkel T.A. Proc. Natl. Acad. Sci. U. S. A. 1985; 82: 488-492Crossref PubMed Scopus (4878) Google Scholar, 26Seed B. Aruffo A. Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 3365-3369Crossref PubMed Scopus (787) Google Scholar, 27Lee C. Luck M. Juppner H. Potts J. Kronenberg H. Gardella T. Mol. Endocrinol. 1995; 9: 1269-1278Crossref PubMed Google Scholar, 28Berridge M. Dawson R. Downes C. Heslop J. Irvine R. Biochem. J. 1983; 212: 473-482Crossref PubMed Scopus (1537) Google Scholar, 29Iida-Klein A. Guo J. Xie L. Jüppner H. Potts Jr., J.T. Kronenberg H.M. Bringhurst F. Abou-Samra A.B. Segre G.V. J. Biol. Chem. 1995; 270: 8458-8465Abstract Full Text Full Text PDF PubMed Scopus (86) Google Scholar, 30Goltzman D. Peytremann A. Callahan E. Tregear G.W. Potts Jr., J.T. J. Biol. Chem. 1975; 250: 3199-3203Abstract Full Text PDF PubMed Google Scholar, 31Rost B. Casadio R. Fariselli P. Sander C. Prot. Sci. 1995; 4: 521-533Crossref PubMed Scopus (640) Google Scholar, 32De Lean A. Stadel J. Lefkowitz R. J. Biol. Chem. 1980; 255: 7108-7117Abstract Full Text PDF PubMed Google Scholar, 33Samama P. Cotecchia S. Costa T. Lefkowitz R. J. Biol. Chem. 1993; 268: 4625-4636Abstract Full Text PDF PubMed Google Scholar, 34Mayo K.E. Mol. Endocrinol. 1992; 6: 1734-1744Crossref PubMed Scopus (221) Google Scholar) was restored to nearly that of the wild type receptor. The double mutant receptors, however, were completely defective in signaling cAMP or inositol phosphate production in response to PTH-(1Jüppner H. Abou-Samra A.-B. Freeman M. Kong X.-F. Schipani E. Richards J. Kolakowski Jr., L.F. Hock J. Potts Jr., J.T. Kronenberg H.M. Segre G.V. Science. 1991; 254: 1024-1026Crossref PubMed Scopus (1120) Google Scholar, 2Abou-Samra A.B. Jüppner H. Force T. Freeman M. Kong X.F. Schipani E. Urena P. Richards J. Bonventre J.V. Potts Jr., J.T. Kronenberg H.M. Segre G.V. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 2732-2736Crossref PubMed Scopus (984) Google Scholar, 3Jüppner H. Schipani E. Bringhurst F.R. McClure I. Keutmann H.T. Potts Jr, Kronenberg H.M. Abou-Samra A.B. Segre G.V. Gardella T. Endocrinology. 1994; 134: 879-884Crossref PubMed Scopus (118) Google Scholar, 4Lee C. Gardella T. Abou-Samra A.-B. Nussbaum S. Segre G. Potts J. Kronenberg H. Juppner H. Endocrinology. 1994; 135: 1488-1495Crossref PubMed Scopus (113) Google Scholar, 5Gardella T.J. Jüppner H. Wilson A.K. Keutmann H.T. Abou-Samra A.B. Segre G.V. Bringhurst F.R. Potts J.T. Nussbaum S.R. Kronenberg H.M. Endocrinology. 1994; 135: 1186-1194Crossref PubMed Scopus (70) Google Scholar, 6Holtmann M. Hadac E. Miller L. J. Biol. Chem. 1995; 270: 14394-14398Abstract Full Text Full Text PDF PubMed Scopus (164) Google Scholar, 7Stroop S. Kuestner R. Serwold T. Chen L. Moore E. Biochemistry. 1994; 34: 1050-1057Crossref Scopus (92) Google Scholar, 8Buggy J.J. Livingston J.N. Rabin D.U. Yoo-Warren H. J. Biol. Chem. 1995; 270: 7474-7478Abstract Full Text Full Text PDF PubMed Scopus (63) Google Scholar, 9Baldwin J. EMBO J. 1993; 12: 1693-1703Crossref PubMed Scopus (875) Google Scholar, 10Strader C.D. Sigal I.S. Register R.B. Candelore M.R. Rands E. Dixon R.A. Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 4384-4388Crossref PubMed Scopus (344) Google Scholar, 11Strader C.D. Gaffney T. Sugg E.E. Candelore M.R. Keys R. Patchett A.A. Dixon R.A. J. Biol. Chem. 1991; 266: 5-8Abstract Full Text PDF PubMed Google Scholar, 12Huang R. Yu H. Strader C. Fong T. Biochemistry. 1994; 33: 3007-3013Crossref PubMed Scopus (134) Google Scholar, 13Rosenkilde M.M. Cahir M. Gether U. Hjorth S.A. Schwartz T.W. J. Biol. Chem. 1994; 269: 28160-28164Abstract Full Text PDF PubMed Google Scholar, 14Krystek Jr., S.R. Patel P. Rose P. Fisher S. Kienzle B. Lach D. Liu E. Lynch J. Novotny J. Webb M. J. Biol. Chem. 1994; 269: 12383-12386Abstract Full Text PDF PubMed Google Scholar, 15Lee J. Elliott J. Sutiphong J. Friesen W. Ohlstein E. Stadel J. Gleason J. Peishoff C. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 7164-7168Crossref PubMed Scopus (38) Google Scholar, 16Hunyady L. Bor M. Balla T. Catt K. J. Biol. Chem. 1995; 270: 9702-9705Abstract Full Text Full Text PDF PubMed Scopus (58) Google Scholar, 17Ji I. Ji T. J. Biol. Chem. 1991; 266: 14953-14957Abstract Full Text PDF PubMed Google Scholar, 18Henderson R. Balswin J.M. Ceska T.A. Zemlin F. Beckman E. Downing K.H. J. Mol. Biol. 1990; 213: 899-929Crossref PubMed Scopus (2500) Google Scholar, 19Schertler G. Villa C. Henderson R. Nature. 1995; 362: 770-772Crossref Scopus (704) Google Scholar, 20Suryanarayana S. von Zastrow M. Kobilka B.K. J. Biol. Chem. 1992; 267: 21991-21994Abstract Full Text PDF PubMed Google Scholar, 21Sealfon S. Chi L. Ebersole B. Rodic V. Zhang D. Ballesteros J. Weinstein H. Mol. Pharmacol. 1995; 270: 16683-16688Google Scholar, 22Zhou W. Flanagan C. Ballesteros J. Konvicka K. Davidson J. Weinstein H. Millar R. Sealfon S. Mol. Pharmacol. 1994; 45: 165-170PubMed Google Scholar, 23Mizobe T. Maze M. Lam V. Suryanarayana S. von Zastrow M. Kobilka B.K. J. Biol. Chem. 1996; 271: 2387-2389Abstract Full Text Full Text PDF PubMed Scopus (75) Google Scholar, 24Kolodziej P.A. Young R.A. Methods Enzymol. 1991; 194: 508-519Crossref PubMed Scopus (423) Google Scholar, 25Kunkel T.A. Proc. Natl. Acad. Sci. U. S. A. 1985; 82: 488-492Crossref PubMed Scopus (4878) Google Scholar, 26Seed B. Aruffo A. Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 3365-3369Crossref PubMed Scopus (787) Google Scholar, 27Lee C. Luck M. Juppner H. Potts J. Kronenberg H. Gardella T. Mol. Endocrinol. 1995; 9: 1269-1278Crossref PubMed Google Scholar, 28Berridge M. Dawson R. Downes C. Heslop J. Irvine R. Biochem. J. 1983; 212: 473-482Crossref PubMed Scopus (1537) Google Scholar, 29Iida-Klein A. Guo J. Xie L. Jüppner H. Potts Jr., J.T. Kronenberg H.M. Bringhurst F. Abou-Samra A.B. Segre G.V. J. Biol. Chem. 1995; 270: 8458-8465Abstract Full Text Full Text PDF PubMed Scopus (86) Google Scholar, 30Goltzman D. Peytremann A. Callahan E. Tregear G.W. Potts Jr., J.T. J. Biol. Chem. 1975; 250: 3199-3203Abstract Full Text PDF PubMed Google Scholar, 31Rost B. Casadio R. Fariselli P. Sander C. Prot. Sci. 1995; 4: 521-533Crossref PubMed Scopus (640) Google Scholar, 32De Lean A. Stadel J. Lefkowitz R. J. Biol. Chem. 1980; 255: 7108-7117Abstract Full Text PDF PubMed Google Scholar, 33Samama P. Cotecchia S. Costa T. Lefkowitz R. J. Biol. Chem. 1993; 268: 4625-4636Abstract Full Text PDF PubMed Google Scholar, 34Mayo K.E. Mol. Endocrinol. 1992; 6: 1734-1744Crossref PubMed Scopus (221) Google Scholar) agonist ligand. The results demonstrate that Arg-233 and Gln-451 have important roles in determining agonist binding affinity and transmembrane signaling. Furthermore, the finding that residues in TM 2 and TM 7 are functionally linked suggests that the TM domain topology of the PTH/PTH-related peptide receptor may resemble that of receptors in the rhodopsin/β-adrenergic receptor family, for which structural and mutagenesis data suggest interactions between TMs 2 and 7. Polar residues within the transmembrane domains (TMs) of G protein-coupled receptors have been implicated to be important determinants of receptor function. We have identified mutations at two polar sites in the TM regions of the rat parathyroid hormone (PTH)/PTH-related peptide receptor, Arg-233 in TM 2 and Gln-451 in TM 7, that caused 17-200-fold reductions in the binding affinity of the agonist peptide PTH-(1Jüppner H. Abou-Samra A.-B. Freeman M. Kong X.-F. Schipani E. Richards J. Kolakowski Jr., L.F. Hock J. Potts Jr., J.T. Kronenberg H.M. Segre G.V. Science. 1991; 254: 1024-1026Crossref PubMed Scopus (1120) Google Scholar, 2Abou-Samra A.B. Jüppner H. Force T. Freeman M. Kong X.F. Schipani E. Urena P. Richards J. Bonventre J.V. Potts Jr., J.T. Kronenberg H.M. Segre G.V. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 2732-2736Crossref PubMed Scopus (984) Google Scholar, 3Jüppner H. Schipani E. Bringhurst F.R. McClure I. Keutmann H.T. Potts Jr, Kronenberg H.M. Abou-Samra A.B. Segre G.V. Gardella T. Endocrinology. 1994; 134: 879-884Crossref PubMed Scopus (118) Google Scholar, 4Lee C. Gardella T. Abou-Samra A.-B. Nussbaum S. Segre G. Potts J. Kronenberg H. Juppner H. Endocrinology. 1994; 135: 1488-1495Crossref PubMed Scopus (113) Google Scholar, 5Gardella T.J. Jüppner H. Wilson A.K. Keutmann H.T. Abou-Samra A.B. Segre G.V. Bringhurst F.R. Potts J.T. Nussbaum S.R. Kronenberg H.M. Endocrinology. 1994; 135: 1186-1194Crossref PubMed Scopus (70) Google Scholar, 6Holtmann M. Hadac E. Miller L. J. Biol. Chem. 1995; 270: 14394-14398Abstract Full Text Full Text PDF PubMed Scopus (164) Google Scholar, 7Stroop S. Kuestner R. Serwold T. Chen L. Moore E. Biochemistry. 1994; 34: 1050-1057Crossref Scopus (92) Google Scholar, 8Buggy J.J. Livingston J.N. Rabin D.U. Yoo-Warren H. J. Biol. Chem. 1995; 270: 7474-7478Abstract Full Text Full Text PDF PubMed Scopus (63) Google Scholar, 9Baldwin J. EMBO J. 1993; 12: 1693-1703Crossref PubMed Scopus (875) Google Scholar, 10Strader C.D. Sigal I.S. Register R.B. Candelore M.R. Rands E. Dixon R.A. Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 4384-4388Crossref PubMed Scopus (344) Google Scholar, 11Strader C.D. Gaffney T. Sugg E.E. Candelore M.R. Keys R. Patchett A.A. Dixon R.A. J. Biol. Chem. 1991; 266: 5-8Abstract Full Text PDF PubMed Google Scholar, 12Huang R. Yu H. Strader C. Fong T. Biochemistry. 1994; 33: 3007-3013Crossref PubMed Scopus (134) Google Scholar, 13Rosenkilde M.M. Cahir M. Gether U. Hjorth S.A. Schwartz T.W. J. Biol. Chem. 1994; 269: 28160-28164Abstract Full Text PDF PubMed Google Scholar, 14Krystek Jr., S.R. Patel P. Rose P. Fisher S. Kienzle B. Lach D. Liu E. Lynch J. Novotny J. Webb M. J. Biol. Chem. 1994; 269: 12383-12386Abstract Full Text PDF PubMed Google Scholar, 15Lee J. Elliott J. Sutiphong J. Friesen W. Ohlstein E. Stadel J. Gleason J. Peishoff C. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 7164-7168Crossref PubMed Scopus (38) Google Scholar, 16Hunyady L. Bor M. Balla T. Catt K. J. Biol. Chem. 1995; 270: 9702-9705Abstract Full Text Full Text PDF PubMed Scopus (58) Google Scholar, 17Ji I. Ji T. J. Biol. Chem. 1991; 266: 14953-14957Abstract Full Text PDF PubMed Google Scholar, 18Henderson R. Balswin J.M. Ceska T.A. Zemlin F. Beckman E. Downing K.H. J. Mol. Biol. 1990; 213: 899-929Crossref PubMed Scopus (2500) Google Scholar, 19Schertler G. Villa C. Henderson R. Nature. 1995; 362: 770-772Crossref Scopus (704) Google Scholar, 20Suryanarayana S. von Zastrow M. Kobilka B.K. J. Biol. Chem. 1992; 267: 21991-21994Abstract Full Text PDF PubMed Google Scholar, 21Sealfon S. Chi L. Ebersole B. Rodic V. Zhang D. Ballesteros J. Weinstein H. Mol. Pharmacol. 1995; 270: 16683-16688Google Scholar, 22Zhou W. Flanagan C. Ballesteros J. Konvicka K. Davidson J. Weinstein H. Millar R. Sealfon S. Mol. Pharmacol. 1994; 45: 165-170PubMed Google Scholar, 23Mizobe T. Maze M. Lam V. Suryanarayana S. von Zastrow M. Kobilka B.K. J. Biol. Chem. 1996; 271: 2387-2389Abstract Full Text Full Text PDF PubMed Scopus (75) Google Scholar, 24Kolodziej P.A. Young R.A. Methods Enzymol. 1991; 194: 508-519Crossref PubMed Scopus (423) Google Scholar, 25Kunkel T.A. Proc. Natl. Acad. Sci. U. S. A. 1985; 82: 488-492Crossref PubMed Scopus (4878) Google Scholar, 26Seed B. Aruffo A. Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 3365-3369Crossref PubMed Scopus (787) Google Scholar, 27Lee C. Luck M. Juppner H. Potts J. Kronenberg H. Gardella T. Mol. Endocrinol. 1995; 9: 1269-1278Crossref PubMed Google Scholar, 28Berridge M. Dawson R. Downes C. Heslop J. Irvine R. Biochem. J. 1983; 212: 473-482Crossref PubMed Scopus (1537) Google Scholar, 29Iida-Klein A. Guo J. Xie L. Jüppner H. Potts Jr., J.T. Kronenberg H.M. Bringhurst F. Abou-Samra A.B. Segre G.V. J. Biol. Chem. 1995; 270: 8458-8465Abstract Full Text Full Text PDF PubMed Scopus (86) Google Scholar, 30Goltzman D. Peytremann A. Callahan E. Tregear G.W. Potts Jr., J.T. J. Biol. Chem. 1975; 250: 3199-3203Abstract Full Text PDF PubMed Google Scholar, 31Rost B. Casadio R. Fariselli P. Sander C. Prot. Sci. 1995; 4: 521-533Crossref PubMed Scopus (640) Google Scholar, 32De Lean A. Stadel J. Lefkowitz R. J. Biol. Chem. 1980; 255: 7108-7117Abstract Full Text PDF PubMed Google Scholar, 33Samama P. Cotecchia S. Costa T. Lefkowitz R. J. Biol. Chem. 1993; 268: 4625-4636Abstract Full Text PDF PubMed Google Scholar, 34Mayo K.E. Mol. Endocrinol. 1992; 6: 1734-1744Crossref PubMed Scopus (221) Google Scholar) without affecting the binding affinity of the antagonist/partial agonist PTH-(3Jüppner H. Schipani E. Bringhurst F.R. McClure I. Keutmann H.T. Potts Jr, Kronenberg H.M. Abou-Samra A.B. Segre G.V. Gardella T. Endocrinology. 1994; 134: 879-884Crossref PubMed Scopus (118) Google Scholar, 4Lee C. Gardella T. Abou-Samra A.-B. Nussbaum S. Segre G. Potts J. Kronenberg H. Juppner H. Endocrinology. 1994; 135: 1488-1495Crossref PubMed Scopus (113) Google Scholar, 5Gardella T.J. Jüppner H. Wilson A.K. Keutmann H.T. Abou-Samra A.B. Segre G.V. Bringhurst F.R. Potts J.T. Nussbaum S.R. Kronenberg H.M. Endocrinology. 1994; 135: 1186-1194Crossref PubMed Scopus (70) Google Scholar, 6Holtmann M. Hadac E. Miller L. J. Biol. Chem. 1995; 270: 14394-14398Abstract Full Text Full Text PDF PubMed Scopus (164) Google Scholar, 7Stroop S. Kuestner R. Serwold T. Chen L. Moore E. Biochemistry. 1994; 34: 1050-1057Crossref Scopus (92) Google Scholar, 8Buggy J.J. Livingston J.N. Rabin D.U. Yoo-Warren H. J. Biol. Chem. 1995; 270: 7474-7478Abstract Full Text Full Text PDF PubMed Scopus (63) Google Scholar, 9Baldwin J. EMBO J. 1993; 12: 1693-1703Crossref PubMed Scopus (875) Google Scholar, 10Strader C.D. Sigal I.S. Register R.B. Candelore M.R. Rands E. Dixon R.A. Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 4384-4388Crossref PubMed Scopus (344) Google Scholar, 11Strader C.D. Gaffney T. Sugg E.E. Candelore M.R. Keys R. Patchett A.A. Dixon R.A. J. Biol. Chem. 1991; 266: 5-8Abstract Full Text PDF PubMed Google Scholar, 12Huang R. Yu H. Strader C. Fong T. Biochemistry. 1994; 33: 3007-3013Crossref PubMed Scopus (134) Google Scholar, 13Rosenkilde M.M. Cahir M. Gether U. Hjorth S.A. Schwartz T.W. J. Biol. Chem. 1994; 269: 28160-28164Abstract Full Text PDF PubMed Google Scholar, 14Krystek Jr., S.R. Patel P. Rose P. Fisher S. Kienzle B. Lach D. Liu E. Lynch J. Novotny J. Webb M. J. Biol. Chem. 1994; 269: 12383-12386Abstract Full Text PDF PubMed Google Scholar, 15Lee J. Elliott J. Sutiphong J. Friesen W. Ohlstein E. Stadel J. Gleason J. Peishoff C. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 7164-7168Crossref PubMed Scopus (38) Google Scholar, 16Hunyady L. Bor M. Balla T. Catt K. J. Biol. Chem. 1995; 270: 9702-9705Abstract Full Text Full Text PDF PubMed Scopus (58) Google Scholar, 17Ji I. Ji T. J. Biol. Chem. 1991; 266: 14953-14957Abstract Full Text PDF PubMed Google Scholar, 18Henderson R. Balswin J.M. Ceska T.A. Zemlin F. Beckman E. Downing K.H. J. Mol. Biol. 1990; 213: 899-929Crossref PubMed Scopus (2500) Google Scholar, 19Schertler G. Villa C. Henderson R. Nature. 1995; 362: 770-772Crossref Scopus (704) Google Scholar, 20Suryanarayana S. von Zastrow M. Kobilka B.K. J. Biol. Chem. 1992; 267: 21991-21994Abstract Full Text PDF PubMed Google Scholar, 21Sealfon S. Chi L. Ebersole B. Rodic V. Zhang D. Ballesteros J. Weinstein H. Mol. Pharmacol. 1995; 270: 16683-16688Google Scholar, 22Zhou W. Flanagan C. Ballesteros J. Konvicka K. Davidson J. Weinstein H. Millar R. Sealfon S. Mol. Pharmacol. 1994; 45: 165-170PubMed Google Scholar, 23Mizobe T. Maze M. Lam V. Suryanarayana S. von Zastrow M. Kobilka B.K. J. Biol. Chem. 1996; 271: 2387-2389Abstract Full Text Full Text PDF PubMed Scopus (75) Google Scholar, 24Kolodziej P.A. Young R.A. Methods Enzymol. 1991; 194: 508-519Crossref PubMed Scopus (423) Google Scholar, 25Kunkel T.A. Proc. Natl. Acad. Sci. U. S. A. 1985; 82: 488-492Crossref PubMed Scopus (4878) Google Scholar, 26Seed B. Aruffo A. Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 3365-3369Crossref PubMed Scopus (787) Google Scholar, 27Lee C. Luck M. Juppner H. Potts J. Kronenberg H. Gardella T. Mol. Endocrinol. 1995; 9: 1269-1278Crossref PubMed Google Scholar, 28Berridge M. Dawson R. Downes C. Heslop J. Irvine R. Biochem. J. 1983; 212: 473-482Crossref PubMed Scopus (1537) Google Scholar, 29Iida-Klein A. Guo J. Xie L. Jüppner H. Potts Jr., J.T. Kronenberg H.M. Bringhurst F. Abou-Samra A.B. Segre G.V. J. Biol. Chem. 1995; 270: 8458-8465Abstract Full Text Full Text PDF PubMed Scopus (86) Google Scholar, 30Goltzman D. Peytremann A. Callahan E. Tregear G.W. Potts Jr., J.T. J. Biol. Chem. 1975; 250: 3199-3203Abstract Full Text PDF PubMed Google Scholar, 31Rost B. Casadio R. Fariselli P. Sander C. Prot. Sci. 1995; 4: 521-533Crossref PubMed Scopus (640) Google Scholar, 32De Lean A. Stadel J. Lefkowitz R. J. Biol. Chem. 1980; 255: 7108-7117Abstract Full Text PDF PubMed Google Scholar, 33Samama P. Cotecchia S. Costa T. Lefkowitz R. J. Biol. Chem. 1993; 268: 4625-4636Abstract Full Text PDF PubMed Google Scholar, 34Mayo K.E. Mol. Endocrinol. 1992; 6: 1734-1744Crossref PubMed Scopus (221) Google Scholar). When mutations at the TM 2 and TM 7 sites were combined, binding affinity for PTH-(1Jüppner H. Abou-Samra A.-B. Freeman M. Kong X.-F. Schipani E. Richards J. Kolakowski Jr., L.F. Hock J. Potts Jr., J.T. Kronenberg H.M. Segre G.V. Science. 1991; 254: 1024-1026Crossref PubMed Scopus (1120) Google Scholar, 2Abou-Samra A.B. Jüppner H. Force T. Freeman M. Kong X.F. Schipani E. Urena P. Richards J. Bonventre J.V. Potts Jr., J.T. Kronenberg H.M. Segre G.V. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 2732-2736Crossref PubMed Scopus (984) Google Scholar, 3Jüppner H. Schipani E. Bringhurst F.R. McClure I. Keutmann H.T. Potts Jr, Kronenberg H.M. Abou-Samra A.B. Segre G.V. Gardella T. Endocrinology. 1994; 134: 879-884Crossref PubMed Scopus (118) Google Scholar, 4Lee C. Gardella T. Abou-Samra A.-B. Nussbaum S. Segre G. Potts J. Kronenberg H. Juppner H. Endocrinology. 1994; 135: 1488-1495Crossref PubMed Scopus (113) Google Scholar, 5Gardella T.J. Jüppner H. Wilson A.K. Keutmann H.T. Abou-Samra A.B. Segre G.V. Bringhurst F.R. Potts J.T. Nussbaum S.R. Kronenberg H.M. Endocrinology. 1994; 135: 1186-1194Crossref PubMed Scopus (70) Google Scholar, 6Holtmann M. Hadac E. Miller L. J. Biol. Chem. 1995; 270: 14394-14398Abstract Full Text Full Text PDF PubMed Scopus (164) Google Scholar, 7Stroop S. Kuestner R. Serwold T. Chen L. Moore E. Biochemistry. 1994; 34: 1050-1057Crossref Scopus (92) Google Scholar, 8Buggy J.J. Livingston J.N. Rabin D.U. Yoo-Warren H. J. Biol. Chem. 1995; 270: 7474-7478Abstract Full Text Full Text PDF PubMed Scopus (63) Google Scholar, 9Baldwin J. EMBO J. 1993; 12: 1693-1703Crossref PubMed Scopus (875) Google Scholar, 10Strader C.D. Sigal I.S. Register R.B. Candelore M.R. Rands E. Dixon R.A. Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 4384-4388Crossref PubMed Scopus (344) Google Scholar, 11Strader C.D. Gaffney T. Sugg E.E. Candelore M.R. Keys R. Patchett A.A. Dixon R.A. J. Biol. Chem. 1991; 266: 5-8Abstract Full Text PDF PubMed Google Scholar, 12Huang R. Yu H. Strader C. Fong T. Biochemistry. 1994; 33: 3007-3013Crossref PubMed Scopus (134) Google Scholar, 13Rosenkilde M.M. Cahir M. Gether U. Hjorth S.A. Schwartz T.W. J. Biol. Chem. 1994; 269: 28160-28164Abstract Full Text PDF PubMed Google Scholar, 14Krystek Jr., S.R. Patel P. Rose P. Fisher S. Kienzle B. Lach D. Liu E. Lynch J. Novotny J. Webb M. J. Biol. Chem. 1994; 269: 12383-12386Abstract Full Text PDF PubMed Google Scholar, 15Lee J. Elliott J. Sutiphong J. Friesen W. Ohlstein E. Stadel J. Gleason J. Peishoff C. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 7164-7168Crossref PubMed Scopus (38) Google Scholar, 16Hunyady L. Bor M. Balla T. Catt K. J. Biol. Chem. 1995; 270: 9702-9705Abstract Full Text Full Text PDF PubMed Scopus (58) Google Scholar, 17Ji I. Ji T. J. Biol. Chem. 1991; 266: 14953-14957Abstract Full Text PDF PubMed Google Scholar, 18Henderson R. Balswin J.M. Ceska T.A. Zemlin F. Beckman E. Downing K.H. J. Mol. Biol. 1990; 213: 899-929Crossref PubMed Scopus (2500) Google Scholar, 19Schertler G. Villa C. Henderson R. Nature. 1995; 362: 770-772Crossref Scopus (704) Google Scholar, 20Suryanarayana S. von Zastrow M. Kobilka B.K. J. Biol. Chem. 1992; 267: 21991-21994Abstract Full Text PDF PubMed Google Scholar, 21Sealfon S. Chi L. Ebersole B. Rodic V. Zhang D. Ballesteros J. Weinstein H. Mol. Pharmacol. 1995; 270: 16683-16688Google Scholar, 22Zhou W. Flanagan C. Ballesteros J. Konvicka K. Davidson J. Weinstein H. Millar R. Sealfon S. Mol. Pharmacol. 1994; 45: 165-170PubMed Google Scholar, 23Mizobe T. Maze M. Lam V. Suryanarayana S. von Zastrow M. Kobilka B.K. J. Biol. Chem. 1996; 271: 2387-2389Abstract Full Text Full Text PDF PubMed Scopus (75) Google Scholar, 24Kolodziej P.A. Young R.A. Methods Enzymol. 1991; 194: 508-519Crossref PubMed Scopus (423) Google Scholar, 25Kunkel T.A. Proc. Natl. Acad. Sci. U. S. A. 1985; 82: 488-492Crossref PubMed Scopus (4878) Google Scholar, 26Seed B. Aruffo A. Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 3365-3369Crossref PubMed Scopus (787) Google Scholar, 27Lee C. Luck M. Juppner H. Potts J. Kronenberg H. Gardella T. Mol. Endocrinol. 1995; 9: 1269-1278Crossref PubMed Google Scholar, 28Berridge M. Dawson R. Downes C. Heslop J. Irvine R. Biochem. J. 1983; 212: 473-482Crossref PubMed Scopus (1537) Google Scholar, 29Iida-Klein A. Guo J. Xie L. Jüppner H. Potts Jr., J.T. Kronenberg H.M. Bringhurst F. Abou-Samra A.B. Segre G.V. J. Biol. Chem. 1995; 270: 8458-8465Abstract Full Text Full Text PDF PubMed Scopus (86) Google Scholar, 30Goltzman D. Peytremann A. Callahan E. Tregear G.W. Potts Jr., J.T. J. Biol. Chem. 1975; 250: 3199-3203Abstract Full Text PDF PubMed Google Scholar, 31Rost B. Casadio R. Fariselli P. Sander C. Prot. Sci. 1995; 4: 521-533Crossref PubMed Scopus (640) Google Scholar, 32De Lean A. Stadel J. Lefkowitz R. J. Biol. Chem. 1980; 255: 7108-7117Abstract Full Text PDF PubMed Google Scholar, 33Samama P. Cotecchia S. Costa T. Lefkowitz R. J. Biol. Chem. 1993; 268: 4625-4636Abstract Full Text PDF PubMed Google Scholar, 34Mayo K.E. Mol. Endocrinol. 1992; 6: 1734-1744Crossref PubMed Scopus (221) Google Scholar) was restored to nearly that of the wild type receptor. The double mutant receptors, however, were completely defective in signaling cAMP or inositol phosphate production in response to PTH-(1Jüppner H. Abou-Samra A.-B. Freeman M. Kong X.-F. Schipani E. Richards J. Kolakowski Jr., L.F. Hock J. Potts Jr., J.T. Kronenberg H.M. Segre G.V. Science. 1991; 254: 1024-1026Crossref PubMed Scopus (1120) Google Scholar, 2Abou-Samra A.B. Jüppner H. Force T. Freeman M. Kong X.F. Schipani E. Urena P. Richards J. Bonventre J.V. Potts Jr., J.T. Kronenberg H.M. Segre G.V. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 2732-2736Crossref PubMed Scopus (984) Google Scholar, 3Jüppner H. Schipani E. Bringhurst F.R. McClure I. Keutmann H.T. Potts Jr, Kronenberg H.M. Abou-Samra A.B. Segre G.V. Gardella T. Endocrinology. 1994; 134: 879-884Crossref PubMed Scopus (118) Google Scholar, 4Lee C. Gardella T. Abou-Samra A.-B. Nussbaum S. Segre G. Potts J. Kronenberg H. Juppner H. Endocrinology. 1994; 135: 1488-1495Crossref PubMed Scopus (113) Google Scholar, 5Gardella T.J. Jüppner H. Wilson A.K. Keutmann H.T. Abou-Samra A.B. Segre G.V. Bringhurst F.R. Potts J.T. Nussbaum S.R. Kronenberg H.M. Endocrinology. 1994; 135: 1186-1194Crossref PubMed Scopus (70) Google Scholar, 6Holtmann M. Hadac E. Miller L. J. Biol. Chem. 1995; 270: 14394-14398Abstract Full Text Full Text PDF PubMed Scopus (164) Google Scholar, 7Stroop S. Kuestner R. Serwold T. Chen L. Moore E. Biochemistry. 1994; 34: 1050-1057Crossref Scopus (92) Google Scholar, 8Buggy J.J. Livingston J.N. Rabin D.U. Yoo-Warren H. J. Biol. Chem. 1995; 270: 7474-7478Abstract Full Text Full Text PDF PubMed Scopus (63) Google Scholar, 9Baldwin J. EMBO J. 1993; 12: 1693-1703Crossref PubMed Scopus (875) Google Scholar, 10Strader C.D. Sigal I.S. Register R.B. Candelore M.R. Rands E. Dixon R.A. Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 4384-4388Crossref PubMed Scopus (344) Google Scholar, 11Strader C.D. Gaffney T. Sugg E.E. Candelore M.R. Keys R. Patchett A.A. Dixon R.A. J. Biol. Chem. 1991; 266: 5-8Abstract Full Text PDF PubMed Google Scholar, 12Huang R. Yu H. Strader C. Fong T. Biochemistry. 1994; 33: 3007-3013Crossref PubMed Scopus (134) Google Scholar, 13Rosenkilde M.M. Cahir M. Gether U. Hjorth S.A. Schwartz T.W. J. Biol. Chem. 1994; 269: 28160-28164Abstract Full Text PDF PubMed Google Scholar, 14Krystek Jr., S.R. Patel P. Rose P. Fisher S. Kienzle B. Lach D. Liu E. Lynch J. Novotny J. Webb M. J. Biol. Chem. 1994; 269: 12383-12386Abstract Full Text PDF PubMed Google Scholar, 15Lee J. Elliott J. Sutiphong J. Friesen W. Ohlstein E. Stadel J. Gleason J. Peishoff C. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 7164-7168Crossref PubMed Scopus (38) Google Scholar, 16Hunyady L. Bor M. Balla T. Catt K. J. Biol. Chem. 1995; 270: 9702-9705Abstract Full Text Full Text PDF PubMed Scopus (58) Google Scholar, 17Ji I. Ji T. J. Biol. Chem. 1991; 266: 14953-14957Abstract Full Text PDF PubMed Google Scholar, 18Henderson R. Balswin J.M. Ceska T.A. Zemlin F. Beckman E. Downing K.H. J. Mol. Biol. 1990; 213: 899-929Crossref PubMed Scopus (2500) Google Scholar, 19Schertler G. Villa C. Henderson R. Nature. 1995; 362: 770-772Crossref Scopus (704) Google Scholar, 20Suryanarayana S. von Zastrow M. Kobilka B.K. J. Biol. Chem. 1992; 267: 21991-21994Abstract Full Text PDF PubMed Google Scholar, 21Sealfon S. Chi L. Ebersole B. Rodic V. Zhang D. Ballesteros J. Weinstein H. Mol. Pharmacol. 1995; 270: 16683-16688Google Scholar, 22Zhou W. Flanagan C. Ballesteros J. Konvicka K. Davidson J. Weinstein H. Millar R. Sealfon S. Mol. Pharmacol. 1994; 45: 165-170PubMed Google Scholar, 23Mizobe T. Maze M. Lam V. Suryanarayana S. von Zastrow M. Kobilka B.K. J. Biol. Chem. 1996; 271: 2387-2389Abstract Full Text Full Text PDF PubMed Scopus (75) Google Scholar, 24Kolodziej P.A. Young R.A. Methods Enzymol. 1991; 194: 508-519Crossref PubMed Scopus (423) Google Scholar, 25Kunkel T.A. Proc. Natl. Acad. Sci. U. S. A. 1985; 82: 488-492Crossref PubMed Scopus (4878) Google Scholar, 26Seed B. Aruffo A. Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 3365-3369Crossref PubMed Scopus (787) Google Scholar, 27Lee C. Luck M. Juppner H. Potts J. Kronenberg H. Gardella T. Mol. Endocrinol. 1995; 9: 1269-1278Crossref PubMed Google Scholar, 28Berridge M. Dawson R. Downes C. Heslop J. Irvine R. Biochem. J. 1983; 212: 473-482Crossref PubMed Scopus (1537) Google Scholar, 29Iida-Klein A. Guo J. Xie L. Jüppner H. Potts Jr., J.T. Kronenberg H.M. Bringhurst F. Abou-Samra A.B. Segre G.V. J. Biol. Chem. 1995; 270: 8458-8465Abstract Full Text Full Text PDF PubMed Scopus (86) Google Scholar, 30Goltzman D. Peytremann A. Callahan E. Tregear G.W. Potts Jr., J.T. J. Biol. Chem. 1975; 250: 3199-3203Abstract Full Text PDF PubMed Google Scholar, 31Rost B. Casadio R. Fariselli P. Sander C. Prot. Sci. 1995; 4: 521-533Crossref PubMed Scopus (640) Google Scholar, 32De Lean A. Stadel J. Lefkowitz R. J. Biol. Chem. 1980; 255: 7108-7117Abstract Full Text PDF PubMed Google Scholar, 33Samama P. Cotecchia S. Costa T. Lefkowitz R. J. Biol. Chem. 1993; 268: 4625-4636Abstract Full Text PDF PubMed Google Scholar, 34Mayo K.E. Mol. Endocrinol. 1992; 6: 1734-1744Crossref PubMed Scopus (221) Google Scholar) agonist ligand. The results demonstrate that Arg-233 and Gln-451 have important roles in determining agonist binding affinity and transmembrane signaling. Furthermore, the finding that residues in TM 2 and TM 7 are functionally linked suggests that the TM domain topology of the PTH/PTH-related peptide receptor may resemble that of receptors in the rhodopsin/β-adrenergic receptor family, for which structural and mutagenesis data suggest interactions between TMs 2 and 7.
Upregulation of CD14 in Kupffer cells has been implicated in the pathogenesis of several forms of liver injury, including alcoholic liver disease. However, it remains unclear whether CD14 mediates lipopolysaccharide (LPS) signaling in this specialized liver macrophage population. In this series of experiments, we determined the role of CD14 in LPS activation of Kupffer cells by using several complementary approaches. First, we isolated Kupffer cells from human livers and studied the effects of anti-CD14 antibodies on LPS activation of these cells. Kupffer cells were incubated with increasing concentrations of LPS in the presence and absence of recombinant human LPS binding protein (LBP). With increasing concentrations of LPS, human Kupffer cell tumor necrosis factor-α (TNF-α) production (a marker for Kupffer cell activation) increased in a dose-dependent manner in the presence and absence of LBP. In the presence of anti-human CD14 antibodies, the production of TNF-α was significantly diminished. Second, we compared LPS activation of Kupffer cells isolated from wild-type and CD14 knockout mice. Kupffer cells from CD14 knockout mice produced significantly less TNF-α in response to the same amount of LPS. Together, these data strongly support a critical role for CD14 in Kupffer cell responses to LPS.
Glucose transport is a highly regulated process and is dependent on a variety of signaling events. Glycogen synthase kinase-3 (GSK-3) has been implicated in various aspects of the regulation of glucose transport, but the mechanisms by which GSK-3 activity affects glucose uptake have not been well defined. We report that basal glycogen synthase kinase-3 (GSK-3) activity regulates glucose transport in several cell types. Chronic inhibition of basal GSK-3 activity (8-24 h) in several cell types, including vascular smooth muscle cells, resulted in an approximately twofold increase in glucose uptake due to a similar increase in protein expression of the facilitative glucose transporter 1 (GLUT1). Conversely, expression of a constitutively active form of GSK-3beta resulted in at least a twofold decrease in GLUT1 expression and glucose uptake. Since GSK-3 can inhibit mammalian target of rapamycin (mTOR) signaling via phosphorylation of the tuberous sclerosis complex subunit 2 (TSC2) tumor suppressor, we investigated whether chronic GSK-3 effects on glucose uptake and GLUT1 expression depended on TSC2 phosphorylation and TSC inhibition of mTOR. We found that absence of functional TSC2 resulted in a 1.5-to 3-fold increase in glucose uptake and GLUT1 expression in multiple cell types. These increases in glucose uptake and GLUT1 levels were prevented by inhibition of mTOR with rapamycin. GSK-3 inhibition had no effect on glucose uptake or GLUT1 expression in TSC2 mutant cells, indicating that GSK-3 effects on GLUT1 and glucose uptake were mediated by a TSC2/mTOR-dependent pathway. The effect of GSK-3 inhibition on GLUT1 expression and glucose uptake was restored in TSC2 mutant cells by transfection of a wild-type TSC2 vector, but not by a TSC2 construct with mutated GSK-3 phosphorylation sites. Thus, TSC2 and rapamycin-sensitive mTOR function downstream of GSK-3 to modulate effects of GSK-3 on glucose uptake and GLUT1 expression. GSK-3 therefore suppresses glucose uptake via TSC2 and mTOR and may serve to match energy substrate utilization to cellular growth.
The behaviors of H species on electrocatalysts are important in the optimal hydrogen evolution reaction and other H-related catalytic reactions. In this work, the electrolytic reduction of water in alkaline media and the diffusion of hydrogen on TiO2 and Au/TiO2 are in situ characterized. In contrast to TiO2 electrode, the Au/TiO2 electrode shows a notably enhanced reduction current due to the spillover of hydrogen from TiO2 to Au and subsequent recombination of hydrogen. In situ electrochemistry Raman spectroscopy shows that the produced H species upon water reduction readily diffuses throughout the TiO2 lattice causing the lattice distortion of TiO2 on the TiO2 electrode but not on the Au/TiO2 electrode. The electrochemical impedance spectroscopy (EIS) investigation reveals the bulk diffusion mechanism for hydrogen diffusion on TiO2 and surface diffusion mechanism on Au/TiO2 electrode and ~0.17 eV lower activation energy barrier of H diffusion on TiO2 than on Au/TiO2. This study deepens our understanding of the hydrogen behavior in the hydrogen evolution reactions and other hydrogen-related reactions on metal oxide surfaces.
The single degree-of-freedom (SDOF) system under the control of three semiactive methods is analytically studied in this paper, where a fractional-order derivative is used in the mathematical model. The three semiactive control methods are on-off control, limited relative displacement (LRD) control, and relative control, respectively. The averaging method is adopted to provide an analytical study on the performance of the three different control methods. Based on the comparison between the analytical solutions with the numerical ones, it could be proved that the analytical solutions are accurate enough. The effects of the fractional-order parameters on the control performance, especially the relative and absolute displacement transmissibility, are analyzed. The research results indicate that the steady-state amplitudes of the three semiactive systems with fractional-order derivative in the model could be significantly reduced and the control performance can be greatly improved.