Monitor of All-sky X-ray Image (MAXI) is an X-ray all-sky scanner, which will be attached on Exposed Facility of Japanese Experiment Module dubbed "Kibo" of International Space Station (ISS). MAXI will be launched by the Space Shuttle or the Japanese H-IIA Transfer Vehicle (HTV) in 2008. MAXI carries two types of X-ray cameras: Solid-state Slit Camera (SSC) for 0.5-10 keV and Gas Slit Camera (GSC) for 2-30 keV bands. Both have long narrow fields of view (FOV) made by a slit and orthogonally arranged collimator plates (slats). The FOV will sweep almost the whole sky once every 96 minutes by utilizing the orbital motion of ISS. Then the light curve of an X-ray point source become triangular shape in one transit. In this paper, we present the actual triangular response of the GSC collimator, obtained by our calibration. In fact they are deformed by gaps between the slats, leaning angle of the slats, and the effective width of the slats. We are measuring these sizes by shooting X-ray beams into the detector behind the collimator. We summarize the calibration and present the first compilation of the data to make the GSC collimator response, which will be useful for public users.
MAXI is an X-ray all-sky monitor which will be mounted on the Japanese Experimental Module (JEM) of the International Space Station (ISS) in 2008. The Gas Slit Camera (GSC) consists of 12 one-dimensional position sensitive proportional counters and the sensitivity will be as high as 1 mCrab for a one-week accumulation in the 2-30 keV band. In order to calibrate the detectors and electronic systems thoroughly before the launch, a fast and versatile Ground Support Electronic (GSE) system is necessary. We have developed a new GSE based on VME I/O boards for a Linux workstation. These boards carry reconfigurable FPGAs of 100,000 gates, together with 16 Mbytes of SDRAM. As a demonstration application of using this GSE, we have tested the positional response of a GSC engineering counter. We present a schematic view of the GSE highlighting the functional design, together with a future vision of the ground testing of the GSC flight counters and digital associated processor.
The disposition of petroleum was managed to sulphuric ash used of sulphuric acid and to watery solution, vanadium and nickel contents contained in it were analyzed by the apparatus of Anodic Stripping Voltammetry (ASV) used of Hanging Mercury Droped Electrode (HMDE) .The number of analytical sample used in this experiment was 6 crude oils with different values of vanadium and nickel contents and 2 lubricating oils that contained obstructing-ion of zinc and other substance.From the results, it was proved that: -(1) Vanadium and nickel contents in crude oil could be analyzed at the same time when iron oxidized substance was not recognized to coexist together in oil.(2) Vanadium and nickel contents in crude oil could be analyzed each separately by treatment with Fe-EDTA masking when iron oxidized substance was recognized to coexist together in oil.(3) Nickel content in oil could be analyzed but vanadium content could not be analyzed if zinc content exists rather in excess.(4) Accuracy of repetition in this measuring method was under 0.02 ppm of vanadium content and under 0.03 ppm of nickel content, and this method gave fairly good agreement with JPI experimental results.
The MAXI (Monitor of All-sky X-ray Image) mission is the first astronomical payload to be installed on the Japanese Experiment Module-Exposed Facility (JEM-EF) on the ISS. It is scheduled for launch in the middle of 2009 to monitor all-sky X-ray objects on every ISS orbit. MAXI will be more powerful than any previous X-ray All Sky Monitor (ASM) payloads, being able to monitor hundreds of AGN. MAXI will provide all sky images of X-ray sources of about 20 mCrab in the energy band of 2-30 keV from observation on one ISS orbit (90 min), about 4.5 mCrab for one day, and about 1 mCrab for one month. A final detectability of MAXI could be 0.2 mCrab for 2 year observations.
The current status is reported of the development of Monitor of All-sky X-ray Image and the measurement of its observational response. MAXI is a scanning X-ray camera to be attached to the Japanese Experiment Module of the International Space Station in 2008. MAXI is mainly composed of two kinds of instruments, GSC which is sensitive to the 2 - 30 keV photons, and SSC to the 0.5 - 10 keV ones. As an X-ray all-sky monitor, MAXI has an unprecedented sensitivity of 7 mCrab in one orbit scan, and 1 mCrab in one week. Using the engineering mode of the proportional counter and of the collimator for GSC, the observational response of GSC is extensively measured. The acceptable performances are obtained as a whole for both the collimator and the counter. The engineering models of the other part of MAXI are also constructed and the measurement of their performance is ongoing.