Automatic diabetic retinopathy (DR) grading based on fundus photography has been widely explored to benefit the routine screening and early treatment. Existing researches generally focus on single-field fundus images, which have limited field of view for precise eye examinations. In clinical applications, ophthalmologists adopt two-field fundus photography as the dominating tool, where the information from each field (i.e.,macula-centric and optic disc-centric) is highly correlated and complementary, and benefits comprehensive decisions. However, automatic DR grading based on two-field fundus photography remains a challenging task due to the lack of publicly available datasets and effective fusion strategies. In this work, we first construct a new benchmark dataset (DRTiD) for DR grading, consisting of 3,100 two-field fundus images. To the best of our knowledge, it is the largest public DR dataset with diverse and high-quality two-field images. Then, we propose a novel DR grading approach, namely Cross-Field Transformer (CrossFiT), to capture the correspondence between two fields as well as the long-range spatial correlations within each field. Considering the inherent two-field geometric constraints, we particularly define aligned position embeddings to preserve relative consistent position in fundus. Besides, we perform masked cross-field attention during interaction to flter the noisy relations between fields. Extensive experiments on our DRTiD dataset and a public DeepDRiD dataset demonstrate the effectiveness of our CrossFiT network. The new dataset and the source code of CrossFiT will be publicly available at https://github.com/FDU-VTS/DRTiD.
The SEVEN IN Absentia (SINA), a typical member of the RING E3 ligase family, plays a crucial role in plant growth, development and response to abiotic stress. However, its biological functions in oil crops are still unknown. Previously, we reported that overexpression of AtSINA2 in Arabidopsis positively regulated the drought tolerance of transgenic plants. In this work, we demonstrate that ectopic expression of AtSINA2 in soybean improved the shoot growth, grain yield, drought tolerance and seed oil content in transgenic plants. Compared to wild type, transgenic soybean produced greater shoot biomass and grain yield, and showed improved seed oil and drought tolerance. Physiological analyses exhibited that the increased drought tolerance of transgenic plants was accompanied with a higher chlorophyll content, and a lower malondialdehyde accumulation and water loss during drought stress. Further transcriptomic analyses revealed that the expressions of genes related to plant growth, flowering and stress response were up- or down-regulated in transgenic soybean under both normal and drought stress conditions. Our findings imply that AtSINA2 improved both agricultural production and drought tolerance, and it can be used as a candidate gene for the genetic engineering of new soybean cultivars with improved grain yield and drought resistance.
Crohn's disease (CD) is a major type of inflammatory bowel disease (IBD) characterized by idiopathic, chronic inflammation with a patchy transmural inflammatory pattern. CD patients experience a decreased quality of life due to symptoms such as diarrhea, abdominal pain, anemia and fever. This study had a cross-sectional single-center design. The experimental group was composed of patients diagnosed with CD according to the Chinese consensus on diagnosis and treatment in inflammatory bowel disease (2018, Beijing). Fifty CD patients and 41 healthy controls were involved in this study and underwent quantitative electroencephalography (QEEG). Analysis showed that the LZC of QEEG in electrode positions O1, O2 and P4 was lower in the CD group than in the control group. Significant differences in EEG LZC were found at electrode positions F4 and P3 when comparing CD patients with a disease duration of over 10 years to those with a duration of less than 10 years. In CD, the connections between the occipital region and other brain regions may be reduced, and the dynamic behaviors may be simplified. With greater durations of CD, patients may gradually develop simplification of behavioral dynamics in particular brain regions.
The retained austenite content in bearing steel GCr15 was determined by magnetism method,metallographic analysis and X-ray diffraction measurement,its effects on the service life of bearing steel GCr15 were also discussed. The results show that magnetism method facilitates the determination of the retained austenite content in bearing steel GCr15 by speediness and accuracy,the effects of the retained austenite content in bearing steel on the fatigue life of the working bearing should be evaluated by comprehensive investigations combining stress form,distribution,running state and the induced martensite transformation characteristics.
As a fundamental and strategic resource, water is a crucial controlling element of ecosystem and natural environment and it plays an irreplaceable role in maintaining and promoting the sustainable development of the economy and society. To achieve the sustainable development of society, the economy and ecology, it is necessary to assess and improve the sustainability of water resources use. Based on the Human–Resource–Nature approach, this paper constructed an indicator system for the sustainability assessment of water resources use (ISSAWRU) in China from three perspectives: water resources condition, socio-economy and ecological environment. A five-level hierarchy of assessment indicators was established. Based on the entropy weight method and the cloud model which took both fuzziness and randomness into account, this paper established an entropy-cloud-based assessment model for the sustainability assessment of water resources use in 31 provinces in China in 2019. The assessment results were compared with results obtained by the TOPSIS method to test their reliability. Finally, a comprehensive and in-depth analysis of the sustainability of water resources use in China was conducted. According to the results, water resources per capita had a weighting of 0.306 and the greatest impact on the sustainable use of water resources. In addition, water structure, agricultural water use efficiency, forest coverage, and so on, had a significant impact on the sustainable use of water resources in China. The overall level of sustainability of water resources use in 31 provinces in China was not high—42% of the regions have unsustainable water resources use and there was a clear spatial distribution trend. The sustainability level of water resources use was higher in the southeast and economically developed regions. Therefore, each region should develop measures to guarantee water security based on the local conditions. This research helps policy makers to figure out the contributing factors associated with sustainability of water resources use and to set relevant rules and regulations to promote the use of water resources in a sustainable way.