An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Abstract As a typical hard but brittle material, Si tends to fracture abruptly at a stress well below its theoretical strength, even if the tested volume goes down to submicron scale, at which materials are usually nearly free of flaws or extended defects. Here, via the thermal–oxidation–mediated healing of the surface that is the preferred site for cracks or dislocations initiation, the premature fracture can be effectively inhibited and the over 50% homogeneous plastic strain with the near‐theoretical strength (twice the value of the unhealed counterpart) are united in submicron‐sized Si particles. In situ transmission electron microscope observations and atomistic simulations elucidate the confinement effect from the passivated and smoothened thermal oxide, which retards the dislocation nucleation and transforms the dominant deformation mechanism from partial dislocation to the more mobile full dislocation. This work demonstrates an effective and feasible surface engineering pathway to optimize the mechanical properties of Si at small scales.
Luminescent metal-radicals have recently received increasing attention due to their unique properties and promising applications in materials science. However, the luminescence of metal-radicals tends to be quenched after formation of metallo-complexes. It is challenging to construct metal-radicals with highly luminescent properties. Herein, we report a highly luminescent metallo-supramolecular radical cage (LMRC) constructed by the assembly of a tritopic terpyridinyl ligand RL with tris(2,4,6-trichlorophenyl)methyl (TTM) radical and Zn2+. Electrospray ionization-mass spectrometry (ESI-MS), traveling-wave ion mobility-mass spectrometry (TWIM-MS), X-ray crystallography, electron paramagnetic resonance (EPR) spectroscopy, and superconducting quantum interference device (SQUID) confirm the formation of a prism-like supramolecular radical cage. LMRC exhibits a remarkable photoluminescence quantum yield (PLQY) of 65%, which is 5 times that of RL; meanwhile, LMRC also shows high photostability. Notably, significant magnetoluminescence can be observed for the high-concentration LMRC (15 wt % doped in PMMA film); however, the magnetoluminescence of 0.1 wt % doped LMRC film vanishes, revealing negligible spin-spin interactions between two radical centers in LMRC.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
This paper presents a hysteresis model for Type-II high temperature superconductor (HTS) by using simplified Preisach Model, in which the Preisach distribution function μ_kα, β) is determined only based on the B-H limiting loop. The nonlinear dynamic circuit model of the superconduc tor is established. In the circuit model, the hysteresis inductance and hysteresis loss described by using simplified Preisach Model are deduced. Applying the hysteresis circuit model, the currents flowing in different superconductor layers of high temperature superconducting cable are simulated, as well as the hysteresis loss of the superconducting cable. The simulation results are verified by comparison with the data recorded in literatures. Finally, the influences of hysteresis on superconducting cable are analyzed and discussed.
This paper presents a two-dimensional elemental operator with biaxial anisotropy based on the physical mechanisms of the cubic textured magnetic materials, and deduces an analytical expression of the direct relationship between magnetic field strength H and magnetization M for a single elemental operator by the partial approximate substitutions. To verify the proposed model, the magnetic hysteresis of a soft magnetic composite material SOMALOY TM 500 under alternating excitations was simulated and compared with the experimental results obtained by a 3D magnetic property tester. The results suggest that the proposed approach can be a useful tool in the modeling of vectorial magnetic hysteresis and the calculation of iron loss in practical engineering electromagnetic field analysis.