Further research is needed on the capability of residential communities to achieve energy self-sufficiency under the constraints of current standards of land use, in particular for the Hot Summer and Cold Winter climate zone (HSCW) of China, where the majority of communities are dominated by high floor-area ratios, thus high-rise dwellings, namely less solar potential per unit floor area, while most residents adopt a “part-time, part-space” pattern of intermittent energy use behavior, thus using relatively low energy per unit floor area. This study examines 150 communities in Changsha to identify morphological indicators and develop a prototype model utilizing the Grasshopper platform. Community morphology is simulated and optimized by taking building location, orientation, and number of floors as independent variables and building energy consumption, solar PV generation, and energy self-sufficiency rate as dependent variables. The results reveal that the morphology optimization can achieve a 4.26% decrease in building energy consumption, a 45% increase in PV generation, and a 13.2% enhancement in energy self-sufficiency, with the optimal being 39%. It highlights that energy self-sufficiency cannot be achieved solely through morphology improvements. Moreover, the study underscores the crucial role of community orientation in maximizing energy self-sufficiency, with the south–north orientation identified as the most beneficial. Additionally, a layout characterized by a horizontally closed and staggered pattern and a vertically scattered arrangement emerges as favorable for enhancing energy self-sufficiency. These findings underscore the importance of considering morphological factors, particularly community orientation, in striving towards energy-self-sufficient high-rise residential communities within the HSCW climate zone of China.
To investigate the diagnostic value of multislice spiral CT (MSCT) and MRI in occult fracture of knee joint with meniscus and ligament injury.From January 2020 to March 2021, 63 patients with knee occult fracture with meniscus and ligament injury, including 41 males and 22 females, aged from 21 to 67 years old, with an average of (44.35±8.77) years old, the course of disease ranged from 1 to 6 days, with an average of (4.64±1.75) days, the body mass index (BMI) was (19.85±2.78) kg/m2. MSCT and MRI data of 63 patients were collected and statistically analyzed to evaluage their diagnist value.The detection of MRI for occult knee fravtures with meniscus and ligament injury, joint cavity effusion, bone marrow edema, and articular surface injury were 100.00% (63/63), 95.24% (60/63), 42.86% (27/63) and 36.51% (23/63), respectively. The detection rates of MSCT were 49.21% (31/63), 41.27% (26/63), 0.00% (0/63) and 1.59% (1/63), respectively, significantly lwver than that of MRI (P<0.05). The diagnostic sensitivity, specificity and accuracy of MRI were significantly higher than those of MSCT(P<0.05).The sensitivity, specificity and accuracy of magnetic resonance imaging in the diagnosis of occult fracture of knee joint with meniscus and ligament injury are significantly better than that of MSCT. MRI has higher accuracy in the diagnosis of peripheral tissue diseases such as joint cavity, articular surface and bone marrow, and can reduce the risk of clinical misdiagnosis.
Over-applied copper (Cu)-based agrochemicals are toxic to citrus trees. However, less information is available discussing the ultrastructural alterations in Cu-stressed citrus species. In the present study, seedlings of Citrus sinensis and Citrus grandis that differed in Cu-tolerance were sandy-cultured with nutrient solution containing 0.5 µM Cu (as control) or 300 µM Cu (as Cu toxicity) for 18 weeks. At the end of the treatments, the physiological parameters and ultrastructural features of the citrus leaves and roots were analyzed. The results indicate that Cu toxicity significantly decreased the ratio of shoot biomass to dry weight, the Cu translocation factor and the total chlorophyll of two citrus species. The anatomical and ultrastructural alterations verified that excessive Cu resulted in starch granules accumulated in the leaves and roots of the two citrus species. Under Cu toxicity, increased root flocculent precipitate and thickened root cell wall might reduce the Cu translocation from citrus roots to the shoots. Compared with C. sinensis, C. grandis maintained a relatively integral root cellular structure under Cu toxicity, which provided a structural basis for a higher Cu tolerance than C. sinensis. The present results increase our understanding of the physiological and ultrastructural responses to Cu toxicity in citrus species.
Constructed wetlands for effluent treatment (CW-ET) play a vital role in the degradation of pollutants, the purification of water, and the improvement of freshwater ecosystems. However, conventional designs often lack a methodical approach for quantifying the efficacy of these wetlands. In this context, numerical simulations aid in optimizing vegetation selection and placement in these systems, thereby enhancing their overall efficiency. In this study, the MIKE21 hydrodynamic (HD) module was coupled with the advection–dispersion (AD) module to simulate the Yingtai CW-ET in Hai’an. Accordingly, key parameters involved in effective water purification were calibrated and the system’s performance in treating effluent from wastewater treatment facilities was evaluated. The findings demonstrated significant removal efficiencies for chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), and ammonia (NH3-N), with average rates of 51.14%, 43.14%, 63.82%, and 54.38%, respectively. In addition, the simulations exhibited high accuracy, with hydrodynamic predictions deviating by under 5% and water quality approximations by under 15%. The treated water quality met the requirements for Class IV surface water standards. Utilizing numerical simulations offers valuable insights for the design and performance evaluation of future constructed wetlands.
Esophageal foreign body impaction is a notable clinical emergency. If the high‑risk esophageal foreign bodies are not removed in time, life‑threatening complications, such as perforation, infection and injury to the vessels, may occur. In the present study, the case of a patient experiencing a foreign body sensation in the throat after ingesting a fish bone by mistake is presented. A high risk of impending arterial puncture was confirmed using thoracic CT and thoracic aorta CT angiography scanning. The ends of the fish bone were first confirmed using a fibro‑bronchoscopy light source passing through the bronchial and esophageal walls, before biopsy forceps were used to successively free the thoracic aorta and bronchial ends under gastroscopy. Finally, the fish bone was safely removed using a combination of gastroscopy and the rarely used fibro‑bronchoscopy, and the patient recovered well after standard care. In certain cases of foreign bodies, it is necessary to use multiple strategies in a timely manner according to the type and location of the ingested foreign body.
Urban waterfront areas, which are essential natural resources and highly perceived public areas in cities, play a crucial role in enhancing urban environment. This study integrates deep learning with human perception data sourced from street view images to study the relationship between visual landscape features and human perception of urban waterfront areas, employing linear regression and random forest models to predict human perception along urban coastal roads. Based on aesthetic and distinctiveness perception, urban coastal roads in Xiamen were classified into four types with different emphasis and priorities for improvement. The results showed that: 1) the degree of coastal openness had the greatest influence on human perception while the coastal landscape with a high green visual index decreases the distinctiveness perception; 2) the random forest model can effectively predict human perception on urban coastal roads with an accuracy rate of 87% and 77%; 3) The proportion of low perception road sections with potential for improvement is 60.6%, among which the proportion of low aesthetic perception and low distinctiveness perception road sections is 10.5%. These findings offer crucial evidence regarding human perception of urban coastal roads, and can provide targeted recommendations for enhancing the visual environment of urban coastal road landscapes.