Currently, Korea heavily relies on overseas satellite navigation systems, which raises the concern that the use of satellite navigation information may be limited because of the international situation. According to the recent trends, Korea intends to develop and build the Korea Regional Navigation Satellite System (KRNSS) that compliments the Global Positioning System (GPS) and can operate on its own if necessary based on the Third Basic Plan for the promotion of space development to guarantee the stability and improve the accuracy of satellite navigation service. Globally, most of the studies conducted on vehicle positioning technology using navigation satellite systems focus on performance evaluation and verification of technology in driving environments that deal with overall driving performance; however, they have a limitation in classifying and evaluating dynamic and diverse environments. In this paper, we introduce a method for the evaluation and analysis to examine the positioning performance of indicators to be considered for the KRNSS and the applicability of the dynamic user positioning technology to road environments. Indicators for evaluating the performance of the dynamic user positioning technology are evaluated based on accuracy of positioning. Additionally, we introduce the software developed to reliably evaluate and analyze the performance of dynamic user positioning technology and the evaluation system implemented in actual vehicles. The evaluation system comprises reference equipment for acquiring positioning reference points, an antenna for receiving positioning of satellite navigation signals, a signal splitter for providing the same signals to the reference equipment and evaluation equipment, and others for recording and analysis. Furthermore, we present the criteria for performance analysis according to the driving environment, such as traffic and road, for the satellite positioning system and discuss the results obtained by evaluating the performance of the positioning technology using the development system and the suitability of the evaluation system.
본 논문에서는 위성항법시스템의 무결성 저해 요인 중, 항법메시지에 담겨 전송되는 궤도력 (Ephemeris) 정보의 고장 여부를 판단할 수 있는 알고리즘을 분석 및 성능 평가를 수행하였다. 알고리즘은 반송파 측정값과 두 지상 기준국간의 기저벡터 정보가 활용된다. 주요 특징으로 기준국 기저선과 위성이 이루는 기하학적 조건 기저선 길이에 따라 동일 궤도력 고장에 대해 알고리즘의 성능의 편차가 발생할 수 있음을 확인하였다. 또한 알고리즘 적용이 적합한 GBAS의 지상 기준국 안테나 배치 방안 및 제주국제공항에 운용되었을 때의 한계치 및 성능 지표 (MDE : Minimum Detectable Error)를 계산하였다. We analyze fault detection algorithm of ephemeris included in navigation message, which is one of the GNSS risk factors. This algorithm uses carrier-phase measurement and baseline vector of two reference stations and is alternative method for uncertainty condition of previous ephemeris. Even though same ephemeris fault is occurred, the geometry condition, between baseline vector of reference stations and satellites, effects on performance of algorithm. Also, we introduce the suitable geometry of reference stations, threshold and performance index (MDE : Minimum Detectable Error) in jeju international airport.
본 논문에서는 실내 공간에 설치된 복수의 카메라로부터 획득한 영상정보를 소형무인기의 자세 추정 및 제어에 이용하는 시스템에 대한 연구를 기술하였다. 제안된 시스템은 실외 비행시험의 제한을 극복하고 효율적인 비행시험 환경을 구축하기 위한 것으로 무인기의 위치 및 자세를 측정하기 위해 별도의 센서를 탑재할 필요가 없어 저가의 장비로 테스트베드를 구성할 수 있다는 장점을 갖는다. 시스템 구현을 위해 요구되는 카메라 보정, 마커 검출, 자세 추정 기법을 소개하였으며 테스트베드를 이용한 실험 결과를 통해 제안된 방법의 타당성 및 성능을 보였다. This paper presents the pose estimation of a small UAV utilizing visual information from low cost cameras installed indoor. To overcome the limitation of the outside flight experiment, the indoor flight test environment based on multi-camera systems is proposed. Computer vision algorithms for the proposed system include camera calibration, color marker detection, and pose estimation. The well-known extended Kalman filter is used to obtain an accurate position and pose estimation for the small UAV. This paper finishes with several experiment results illustrating the performance and properties of the proposed vision-based indoor flight test environment.
GPS/INS 통합시스템의 고장검출에는 카이제곱 분포 기반의 알고리즘이 일반적으로 사용된다. 본 논문에서는 기존의 RAIM (Receiver Autonomous Integrity Monitor)과 카이제곱 분포 기반의 알고리즘을 결합하여 무인기용 저급 프로세서에 적용하기 위해 단순화시킨 GPS/INS 고장검출 알고리즘을 제안한다. 제안한 알고리즘의 검증을 위해 고장모델을 사용하여 그 결과를 나타내었다. In the GPS/INS integrated system fault detection, algorithm based on a chi-square distribution is commonly used. In this paper, it has been proposed simplified GPS/INS fault detection algorithm that is combined conventional RAIM (Receiver Autonomous Integrity Monitor) and algorithm based on chi-square distribution for UAV using row-grade processor. It use a fault model to verify the proposed algorithm and produced the result.
본 논문에서는 제주 국제 공항에서 실시된 항공우주연구원의 비행 실험 데이터를 기반으로 항공기 착륙 상황을 시뮬레이션하고, Protection Level 관점에서 제주 국제 공항 GBAS 시스템의 가용성 및 성능 향상을 위한 요구조건을 분석하였다. 요구조건을 분석하기위해, CAT I, CAT II/III의 결심고도에서 항공기 착륙 상황 (기준국 정밀좌표, 항공기 착륙 속도, 기준국 및 항공기 안테나 성능지표 등)을 Protection Level 계산에 적용하였다. 이 때 귀무가설 / 대립가설 (H0 / H1) Protection Level을 한계치 (Alert Limit)와 비교 분석하여, 현재 CAT I, CAT II/III의 가용도 및 개선 방향을 도출하였다. This paper presents the simulation results of GBAS availability and requirement (with respected to Vertical Protection Level) using simulated data at CAT I, CAT II/III DH point (Decision Height), which are generated using Jeju international GNSS reference position, aircraft horizontal velocity and reference/aircraft GNSS antenna performance index and so on. Two kinds of protection levels are presented, one is from a hypothesis (H0) and other is from a alternative hypothesis (H1). These protection levels are compared with AL (Alert Limit), and we analyse the GBAS availability and requirement for CAT I and CAT II/III at the airport.
위성항법시스템 (GNSS: Global Navigation Satellite System)으로 계산되는 위치 정확도는 위성 의사거리 (Pseudo-Range) 측정값 정확도와 DOP (Dilution of Precision) 으로 표현되는 위성의 배치관계를 통해 결정된다. 위성의 의사거리 측정값은 위성 시계, 궤도, 전리층, 대류층, 다중경로 등 여러 요인에 의해 오차가 발생하게 되며, 사용자 의사거리정확도를 향상을 위해서는 정확한 의사거리 측정값이 필요하다. 반면, 위성의 배치의 경우, 사용자의 수신환경에 따라 위치 정확도가 달라진다. 예를 들어, 고층 빌딩이 많은 도심의 경우에는 위성전파 차단의 위험이 많아 가시위성의 수가 감소하고 개활지에 비해 상대적으로 양호한 DOP을 가지기 어렵다. 본 논문은 가상위성 (Virtual Satellite)을 통해 DOP 성능 개선과 의미있는 가상거리측정값 (VRM: Virtual Range Measurement) 정확도를 확보하여, 위치 정확도 향상 시키는 방법에 대해 연구하였다. 그 결과 적절한 가상위성배치와 정확한 가상 거리측정값을 이용하면 수직위치 정확도의 개선 효과를 얻을 수 있었다.
A carrier phase anomaly detection and validation method is proposed for precise vehicle positioning in dynamic environments. Given that carrier phase measurement is affected by satellite and user dynamics as well as unexpected anomalies, we propose four sequential processes to detect and identify an anomaly: 1) dynamics separation; 2) anomaly detection; 3) validation; and 4) position domain test. First, terms related to the satellite and user dynamics are estimated individually and removed from the carrier phase measurement to yield an error term, which possibly includes an anomaly and should be detected. The error term is examined with respect to a threshold level, and the measurement values are divided into anomaly candidates and normal candidates. Anomaly candidates are reexamined and validated one-by-one using a normal measurement set and the anomaly is determined. Finally, the position domain is evaluated so that position errors can be used as additional criteria for detecting the anomaly attributed to satellite deployment. The proposed algorithm is verified by simulation analyses and an experimental test. The proposed methods can be effective in detecting anomalies and increasing the reliability of precise vehicle positioning.
In GNSS (Global Navigation Satellite System) based navigation application, a Protection Level (PL) is supposed to guarantee the system integrity and availability. The PL is estimated a position error bound, which is a projected value of range information (pseudorange) errors, is a conservative value than unknown true position error. A range error model in a PL is assumed to be a zero mean Gaussian for simplicity purposes. However, a true range error distribution has a non-Gaussian property in general. For this reason, a marginal factor that damages system availability needs to be bound tail of error distribution[1]. In this paper, we present a protection level calculation method using a particle filter concept. A particle filter does not need to assume Gaussian property of measurement. Using the information from the particle filter (such as posteriori distribution of estimated position error with normalized weight of measurement residuals), we propose the protection level method, which satisfies the hazard misleading probability. Finally, we apply this method to protection level calculations for the real data which is obtained from the KARI GBAS Testbed in Jeju international airport of Korea.