To explore the effects of slope position and soil horizon on soil microbial biomass and abundance, chloroform fumigation extraction methods and real-time fluorescence-based quantitative PCR (Real-time PCR) were adopted to quantify the changes of soil microbial biomass C, N and abundance of bacteria and fungi, respectively. Soil samples were harvested from three horizons along profile, i. e., leaching horizon (A, 0-10 cm), transitional horizon (AB, 30-50 cm) and alluvial horizon (B, 70-100 cm), which were collected from the upper, middle and lower slope positions of a karst primary forest ecosystem. The results showed that slope position, soil horizon and their interaction significantly influenced the soil microbial biomass and abundance (P < 0.05). Different from A horizon, where SMBC was greater in lower than in upper slope position (P < 0.05), SMBC in AB and B horizons were highest in middle slope position. Similarly, SMBN was greater in lower than in upper slope position for A, AB and B horizons. Besides soil bacterial abundance in B horizon and fungal abundance in AB layer, the middle slope position had the highest value for all the three soil horizons (P < 0.05). Stepwise regression analysis showed that soil organic carbon, available nitrogen and pH were the key factors responsible for SMBC and SMBN variation, respectively, while the important factors responsible for the variation of bacteria abundance were available nitrogen and available phosphorus, and that for fungi abundance variation were available potassium.
Taking the soils developed on limestone and sandstone and with typical land use patterns in Karst region of Northwest Guangxi as test objects, this paper studied their soil fertility under effects of parent rock and land use pattern. A total of eleven soil fertility variables were selected for factor analysis, and the component score for each sampling site was assessed by using principal component analysis (PCA) sequencing and clustering diagram. The factor analysis indicated that the eleven variables could be reduced to four components, i.e., overall soil fertility, soil pH and total phosphorus, soil available phosphorus, and soil total potassium. The PCA sequencing and clustering analysis showed that the overall soil fertility was mainly affected by land use pattern, being the highest in abandoned farmland. Soil pH and total phosphorus content were mainly affected by parent rock. The pH value and total phosphorus content in the red soil developed on sandstone were much lower than those in the calcareous soil developed on limestone. Soil available phosphorus and total potassium contents were significantly affected by fertilization. The available phosphorus and total potassium contents in Karst calcareous soil and red soil were lower than the average level of China soils. Therefore, the Karst calcareous soil should be fertilized with ammonium nitrogen fertilizer to improve its phosphorus availability, while the Karst red soil should be amended with lime to increase its available phosphorus content. In addition, potassium fertilizer should be applied to the two soil types to improve their soil fertility.
As one of the key enzymes involved in lignin decomposition of forest litter, laccase plays an important role in the carbon cycling in forest ecosystem. By using TA cloning and sequencing, a comparative study was conducted on the basidiomycetous laccase gene diversity in the O horizon (litter layer) and A horizon (surface soil layer, 0-20 cm) in two subtropical forests (a primeval evergreen deciduous broadleaved mixed forest and an artificial masson pine forest). For the same soil horizons, the basidiomycetous laccase gene diversity and richness were higher in the primeval forest than in the masson pine forest; for the same forest ecosystems, the basidiomycetous laccase gene diversity and richness in the primeval forest were slightly higher in O horizon than in A horizon, but those in the masson pine forest were apparently lower in O horizon than in A horizon. The two forest soils had the same dominant laccase gene-containing basidiomycetous populations, and most of the populations had high similarity of amino acid sequence to Mycena sp. or Pleurotus sp. belonging to Agaricales. Comparing with the A horizon in primeval forest and the O horizon in masson pine forest, the O horizon in primeval forest and the A horizon in masson pine forest had a relatively uniform distribution of basidiomycetous populations. The nucleotide sequence similarity of basidiomycetous laccase gene between the O and A horizons in the masson pine forest was higher than that in the primeval forest. This study showed that vegetation and soil horizon had significant effects on the basidiomycetous laccase gene diversity and community structure, and the discrepancies in the substrate availability for basidiomycetes and in the soil pH induced by the vegetation and soil horizon could be the driving forces.