The folate receptor has attracted much attention in the field of radiolabeled imaging agents due to the significant difference in its expression levels between tumor cells and most normal cells. However, the development of folate-based imaging agents has been limited by their high uptake in the kidney. In this study, to reduce the high renal uptake of radiolabeled folate-based tracers, a phenyl-isonitrile folate derivative (CNMBFA) was designed and labeled with technetium-99m. The complex obtained
A novel C3′‐functionalized thymidine dithiocarbamate derivative (3’DTC‐TdR) was successfully synthesized and labelled using [ 99m TcO] 3+ core and [ 99m Tc(CO) 3 (H 2 O) 3 ] + core with high yields. The structures of the 99m Tc complexes were verified by preparation and characterization of the corresponding stable rhenium complexes. Both of the complexes were lipophilic and stable in vitro . Cell internalization experiments indicated that the uptakes of 99m TcO‐3’DTC‐TdR were related to nucleoside transporters. Biodistribution of these complexes in mice bearing tumor showed that they had high tumor uptakes, good tumor/muscle ratios and tumor/blood ratios. Especially for 99m TcO‐3’DTC‐TdR, it exhibited the highest tumor/muscle ratio and tumor/blood ratio at 4 h post‐injection. SPECT/CT imaging studies indicated clear accumulation in tumor, suggesting 99m TcO‐3’DTC‐TdR would be a promising candidate for tumor imaging.
Dermatofibrosarcoma Protuberans (DFSP) is a rare, low-grade malignant tumor of the dermis with a high recurrence rate post-surgery. Current treatments, including surgery, radiotherapy, and targeted therapy, have limitations. Photodynamic therapy (PDT) with 5-aminolevulinic acid (5-ALA) is a promising non-invasive approach, but its efficacy in DFSP treatment remains underexplored.
The Argentine shortfin squid (Illex argentinus) in the Southwest Atlantic Ocean is an economically important cephalopod. Catch per unit effort (CPUE) of species, a critical proxy for fish abundance, affected by many factors, including environmental variables. Given the importance and less considering of multiple environmental factors in the CPUE standardization for I. argentinus, this study provided an accurate standardized CPUE based on the habitat-based model incorporating the effect of environmental variables including sea surface temperature (SST), sea surface height (SSH), and chlorophyll a concentration (Chl-a). The results showed that the trends of yearly and monthly nominal CPUE were consistent with the standardized CPUE. As the highly concentrated fishing operations, the effective fishing effort was always lower than nominal fishing effort, subsequently, the standardized CPUE was found to be higher than nominal CPUE. Among the environmental factors, SSH and Chl-a are the primary environmental variables when standardizing I. argentinus CPUE revealed by habitat-based model. The precision of CPUE standardization could be improved by our methods. The findings will help to grasp the dynamics in the abundance and provide a basic information for the I. argentines stock assessment in the Southwest Atlantic Ocean.
Acute pulmonary embolism (APE) is a common cause of acute cardiovascular failure and has a high morbidity and mortality rate. Inhibiting the excessive proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) is a potential treatment strategy following an APE. Various microRNAs (miRNAs/miRs) have been shown to regulate cell proliferation, apoptosis and other physiological processes. However, the specific mechanisms underlying the action of multiple miRNAs are still not understood in APE. In the present study, the role of miR‑106b‑5p on APE was demonstrated in platelet‑derived growth factor (PDGF)‑induced PASMCs in vitro and in an APE‑mouse model in vivo. The results showed that miR‑106b‑5p expression was downregulated in PDGF‑induced PASMCs and APE mice, and NOR1 levels were upregulated. Proliferating cell nuclear antigen (PCNA) expression levels in cells and proliferation of PASMCs proliferation and migration were reduced following treatment with miR‑106b‑5p agomiR, and increased following treatment with miR‑106b‑5p antagomiR. miR‑106b‑5p targeted the 3' untranslated region of NOR‑1 mRNA and reduced NOR1 expression. NOR1 overexpression reversed the effects of miR‑106‑5p on PDGF‑induced PASMCs. The functional roles of miR‑106b‑5p in PDGF‑induced PASMCs and an APE mouse‑model, and the underlying molecular mechanisms were evaluated. AgomiR‑106b‑5p improved APE‑induced mortality and pulmonary vascular proliferation in mice. These data suggest that miR‑106‑5p is a novel regulator of proliferation of PASMCs and of pulmonary vascular remodeling through PDGF‑induced PASMCs in an APE mouse model via targeting NOR1. These results expand the understanding of the pathogenesis underlying APE and highlight potential novel therapeutic targets.
The physiological process of wound healing is dynamic, continuous, and intricate. Nowadays, full-thickness burn wounds are treated by autologous skin transplantation. Unfortunately, when substantial burns develop, there are fewer donor sites accessible, making it difficult to satisfy the requirement for large-scale skin transplants and increasing the risk of patient mortality. This study investigated the possibility of using a newly created hypoimmunogenic epidermal cell sheet to heal skin wounds.Transfection with lentivirus was used to generate Keratinocytes (KCs) that overexpress Indoleamine 2,3-Dioxygenase (IDO). Western blotting and quantitative polymerase chain reaction were used to measure IDO levels. To evaluate the function of IDO+ keratinocytes, CCK-8 and Transwell assays were performed. In cell sheet induction media, KCs and Fibroblasts (FBs) were cultured to yield epidermal cell sheets. The full-thickness skin excisions of BALB/c mice were transplanted with epidermal cell sheets. To assess the tumorigenicity of IDO+ keratinocytes, BALB/c nude mouse xenograft models were also used. CD3 and CD31 immunofluorescence labeling of wound tissue on day 12 to identify T lymphocyte infiltration and capillary development. ELISA measurement of IL-1 and TNF-α concentrations.IDO + keratinocytes dramatically enhanced the expression levels of IDO mRNA and protein, as well as the amount of kynurenine in the conditioned media of IDO+ keratinocytes, compared to the Control and NC groups. CD8+ T cell apoptosis was considerably greater in the IDO group than in the Control and NC groups. Nevertheless, the proliferation and migratory capabilities of IDO+ keratinocytes were not substantially different from those of the Control and NC groups. In vitro cultivation of the hypoimmunogenic epidermal cell sheet was effective. In vivo transplantation experiments demonstrated that IDO+ epidermal cell sheets can effectively promote wound healing without tumorigenicity, and IDO+ epidermal cell sheets may promote wound healing by decreasing the expression levels of inflammatory factors (TNF and IL-1) in wound tissue, decreasing CD3+ T lymphocytes, and increasing infiltration and new capillaries in wound tissue.In this study, we successfully constructed the hypoimmunogenic epidermal cell sheet and demonstrated that the hypoimmunogenic epidermal cell sheet could accelerate wound healing.