Benzothiazole derivatives have been drawing great attention due to their antimalarial and antitumor properties.We reported a new approach to prepare benzothiazoles: condensation of thioethylbenzoate with 2-aminothiophenols.The operation is convenient and the reaction proceeds in mild condition.Six compounds in good yields were synthesized by this method.
Recent development in ruthenium-catalyzed aerobic oxidation reactions was reviewed.The reactions included aerobic oxidation of alcohols and amines,oxidations of alkenes,oxidative C-O,C-N and C-C bond formation reactions and oxidative ring opening.In addition,the mechanisms of these novel reactions were briefly discussed herein.
Abstract Efficient brain drug delivery has been a challenge in the treatment of Alzheimer's disease (AD) and other brain disorders as blood‐brain barrier (BBB) impedes most drugs to reach brain. To overcome this obstacle, a novel poly(lactic‐co‐glycolic acid) (PLGA) nanoparticle conjugated with CD47 extracellular domain via reactive oxygen species (ROS)‐responsive phenylborate ester bond exhibiting “do not eat me” signal and BBB penetrating peptide CRTIGPSVC (CRT) and microglia modulation agent Nec‐1s encapsulated in it is developed. The experimental results show that the designed nanoparticle efficiently increases its half‐life in blood circulation by preventing engulfment via phagocytes, and enhances its brain distribution by synergistic effect of CD47 and CRT. The high level of ROS in mouse brain releases CD47 from the nanoparticles and the resultant particles are effectively phagocytized by resident microglia. The engulfed Nec‐1s modulates pathological microglia to a beneficial state, which reduces Aβ burden, microgliosis and astrocytosis, decreases cytokine production and oxidative stress in the brains of AD mice, and finally attenuates cognition deficits and synapse loss. The results first demonstrate that the conditionally releasable “do not eat me” CD47 signal remarkably facilitates microglia‐targeted drug delivery and warrants further study to develop therapeutic agent for AD treatment.
// Shuai Lu 1 , Helga-Paula Török 1 , Eike Gallmeier 2 , Frank T. Kolligs 1, 3 , Antonia Rizzani 1 , Sabrina Arena 4, 5 , Burkhard Göke 1 , Alexander L. Gerbes 1 , Enrico N. De Toni 1 1 Medizinische Klinik und Poliklinik 2, Klinikum der Universität München, Campus Grosshadern, Munich, Germany 2 Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University of Marburg, Marburg, Germany 3 Department of Internal Medicine and Gastroenterology, HELIOS Klinikum Berlin-Buch, Berlin, Germany 4 Department of Oncology, University of Torino, Candiolo, Torino, Italy 5 Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Italy Correspondence to: Enrico De Toni, e-mail: enrico.detoni@med.uni-muenchen.de Keywords: HCC, targeted therapies, c-MET, apoptosis Received: January 28, 2015 Accepted: May 28, 2015 Published: June 10, 2015 ABSTRACT Tivantinib, a c-MET inhibitor, is investigated as a second-line treatment of HCC. It was shown that c-MET overexpression predicts its efficacy. Therefore, a phase-3 trial of tivantinib has been initiated to recruit "c-MET-high"patients only. However, recent evidence indicates that the anticancer activity of tivantinib is not due to c-MET inhibition, suggesting that c-MET is a predictor of response to this compound rather than its actual target. By assessing the mechanisms underlying the anticancer properties of tivantinib we showed that this agent causes apoptosis and cell cycle arrest by inhibiting the anti-apoptotic molecules Mcl-1 and Bcl-xl, and by increasing Cyclin B1 expression regardless of c-MET status. However, we found that tivantinib might antagonize the antiapoptotic effects of c-MET activation since HGF enhanced the expression of Mcl-1 and Bcl-xl. In summary, we show that the activity of tivantinib is independent of c-MET and describe Mcl-1, Bcl-xl and Cyclin B1 as effectors of its antineoplastic effects in HCC cells. We suggest that the predictive effect of c-MET expression in part reflects the c-MET-driven overexpression of Mcl-1 and Bcl-xl in c-MET-high patients and that these molecules are considered as possible response predictors.
A pyrene-functionalized [2]catenane with switchable optical output was constructed through a novel sulfonamide [2]catenane synthesized by a self-templation approach.
Polo-like kinase 1, an important enzyme with diverse biological actions in cell mitosis, is a promising target for developing novel anticancer drugs. A combined molecular docking, structure-based pharmacophore modeling and three-dimensional quantitative structure-activity relationship (3D-QSAR) study was performed on a set of 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives as PLK1 inhibitors. The common substructure, molecular docking and pharmacophore-based alignment were used to develop different 3D-QSAR models. The comparative molecular field analysis (CoMFA) and comparative molecule similarity indices analysis (CoMSIA) models gave statistically significant results. These models showed good q(2) and r(2) (pred) values and revealed a good response to test set validation. All of the structural insights obtained from the 3D-QSAR contour maps are consistent with the available crystal structure of PLK1. The contour maps obtained from the 3D-QSAR models in combination with the structure based pharmacophore model help to better interpret the structure-activity relationship. These satisfactory results may aid the design of novel PLK1 inhibitors. This is the first report on 3D-QSAR study of PLK1 inhibitors.
Abstract Overproduction or poor clearance of amyloids lead to amyloid aggregation and even amyloidosis development. Different amyloids may interact synergistically to promote their aggregation and accelerate pathology in amyloidoses. Amyloid oligomers assembled from different amyloids share common structures and epitopes, and are considered the most toxic species in the pathologic processes of amyloidoses, which suggests that an agent targeting the common epitope of toxic oligomers could provide benefit to several amyloidoses. In this study, we firstly showed that an oligomer-specific single-chain variable fragment antibody, W20 simultaneously improved motor and cognitive function in Parkinson’s disease and Huntington’s disease mouse models, and attenuated a number of neuropathological features by reducing α-synuclein and mutant huntingtin protein aggregate load and preventing synaptic degeneration. Neuroinflammation and oxidative stress in vivo were also markedly inhibited. The proposed strategy targeting the common epitopes of amyloid oligomers presents promising potential for treating Parkinson’s disease, Huntington’s disease, Alzheimer’s disease, and other amyloidoses.
Polo-like kinase 1 is an important and attractive oncological target that plays a key role in mitosis and cytokinesis. A combined pharmacophore- and docking-based virtual screening was performed to identify novel polo-like kinase 1 inhibitors. A total of 34 hit compounds were selected and tested in vitro, and some compounds showed inhibition of polo-like kinase 1 and human tumor cell growth. The most potent compound (66) inhibited polo-like kinase 1 with an IC(50) value of 6.99 μm. The docked binding models of two hit compounds were discussed in detail. These compounds contained novel chemical scaffolds and may be used as foundations for the development of novel classes of polo-like kinase 1 inhibitors.