Abstract: Colorectal cancer is currently the third largest malignant tumor in the world, with high new cases and high mortality. Metastasis is one of the most common causes of death of colorectal cancer, of which liver metastasis is the most fatal. Since the beginning of the Human Genome Project in 2001, people have gradually recognized the 3 billion base pairs that make up the human genome, of which only about 1.5% of the nucleic acid sequences are used for protein coding, including proto-oncogenes and tumor suppressor genes. A large number of differences in the expression of proto-oncogenes and tumor suppressor genes have also been found in the study of colorectal cancer, which proves that they are also actively involved in the progression of colorectal cancer and promote the occurrence of liver metastasis. Except for 1.5% of the coding sequence, the rest of the nucleic acid sequence does not encode any protein, which is called non-coding RNA. With the deepening of research, genome sequences without protein coding potential that were originally considered "junk sequences" may have important biological functions. Many years of studies have found that a large number of abnormal expression of ncRNA in colorectal cancer liver metastasis, indicating that ncRNA plays an important role in it. To explore the role and mechanism of these coding sequences and non-coding RNA in liver metastasis of colorectal cancer is very important for the early diagnosis and treatment of liver metastasis of colorectal cancer. This article reviews the coding genes and ncRNA that have been found in the study of liver metastasis of colorectal cancer in recent years, as well as the mechanisms that have been identified or are still under study, as well as the clinical treatment of liver metastasis of colorectal cancer. Keywords: colorectal cancer, liver metastasis, mechanisms, treatment
Abstract DNA methylation is an essential epigenetic modification, and found to be dynamically changed due to the observation of active DNA demethylation. During active demethylation, 5‐methylcytosine ( 5mC ) was oxidized stepwise by ten‐eleven translocation ( TET ) enzymes into 5‐hydroxymethylcytosine (5hmc), 5‐formylcytosine ( 5fC ), and 5‐carboxylcytosine ( 5caC ). Then, the subsequent excision of 5fC and 5caC combined with base excision repair further restored cytosine, which completes the demethylation process. Here, we report that 5‐formylcytosine and 5‐carboxylcytosine significantly reduce the activity of HhaI DNA methyltransferase to methylate target cytosines when present on the hemi‐modified sequence of the complementary DNA . This finding demonstrates that 5fC and 5caC function as more than intermediates for active DNA demethylation.
Protein tyrosine kinase (PTK) signaling pathway has been confirmed to be involved in the proliferation, differentiation and migration of tumor cells. Anlotinib, as a multi-target tyrosine kinase inhibitor, which can inhibit the expression of vascular endothelial growth factor receptor (VEGFR), has been confirmed to have significant therapeutic effects on non-small cell lung cancer, medullary thyroid carcinoma, and soft tissue sarcoma, but the therapeutic effect on gastric cancer (GC) is still unclear.Anlotinib was screened out of 880 drugs through Cell Counting Kit 8 (CCK-8) technology. TCGA was used to detect the expression of VEGFR in GC, and Kaplan-Meier Plotter was used to analyze the correlation between the expression of VEGFR and the survival rate of GC patients. The impacts exerted by anlotinib to GC cell proliferating, migrating and invading processes were assessed through wound healing assay, transwell assay, and proliferation assay in vitro. In vivo experiments of GC were performed in C57/B6 mouse model to evaluate the function of anlotinib and PD-1 antibody.It was found from more than compunds that anlotinib has a significant inhibitory effect on GC cells. In vitro experiments show that anlotinib can significantly inhibit the proliferation, invasion and proliferation of GC cells. The expression level of VEGFR is related to the prognosis and survival of GC. GC patients with low expression of VEGFR have better survival. Anlotinib can inhibit the expression of PD-L1, and achieve better therapeutic effects after combined with PD-1 antibody.The present study reveals that anlotinib down regulates PD-L1. The combination of anlotinib and PD-1 monoclonal antibody is beneficial to GC therapy.
Abstract Colorectal cancer (CRC) is a common digestive tract tumor with the third incidence and death in the world. There is still an urgent need for effective therapeutic targets and prognostic markers for CRC. Herein, we report a novel potential target and marker, Chordin like‐1 (CHRDL1). The function of CHRDL1 has been reported in gastric cancer, breast cancer, and oral squamous cell carcinoma. However, the biological effect of CHRDL1 in CRC remains unrevealed. Transwell and tube formation experiments were used to determine the biological function of CHRDL1. Western blot and rescue experiments were used to determine the specific mechanisms of CHRDL1. Results showed CHRDL1 is significantly downregulated in CRC cell lines and tissues. In vitro, experiments confirmed that CHRDL1 can inhibit cell growth, migration, invasion, angiogenesis and reverse epithelial‐mesenchymal transformation. In vivo, experiments proved that it can inhibit tumor growth and metastasis. Mechanistically, we newly find that CHRDL1 exerts biological functions through the transforming growth factor‐beta (TGF‐β)/vascular endothelial growth factor signaling axis in vitro and in vivo. Therefore, we concluded that CHRDL1 reduces the growth, migration, and angiogenesis of CRC cells by downregulating TGF‐β signaling. Our new findings on CHRDL1 may provide a basis for clinical antiangiogenesis therapy and the prognosis of CRC.
Cytochrome P450 1A2 (CYP1A2) is a known tumor suppressor in hepatocellular carcinoma (HCC), but its expression is repressed in HCC and the underlying mechanism is unclear. In this study, we investigated the epigenetic mechanisms of CYP1A2 repression and potential therapeutic implications. In HCC tumor tissues, the methylation rates of CYP1A2 CpG island (CGI) and DNMT3A protein levels were significantly higher, and there was a clear negative correlation between DNMT3A and CYP1A2 protein expression. Knockdown of DNMT3A by siRNA significantly increased CYP1A2 expression in HCC cells. Additionally, treating HCC cells with decitabine (DAC) resulted in a dose-dependent upregulation of CYP1A2 expression by reducing the methylation level of CYP1A2 CGI. Furthermore, we observed a decreased enrichment of H3K27Ac in the promoter region of CYP1A2 in HCC tissues. Treatment with the trichostatin A (TSA) restored CYP1A2 expression in HCC cells by increasing H3K27Ac levels in the CYP1A2 promoter region. Importantly, combination treatment of sorafenib with DAC or TSA resulted in a leftward shift of the dose-response curve, lower IC50 values, and reduced colony numbers in HCC cells. Our findings suggest that hypermethylation of the CGI at the promoter, mediated by the high expression of DNMT3A, and hypoacetylation of H3K27 in the CYP1A2 promoter region, leads to CYP1A2 repression in HCC. Epigenetic drugs DAC and TSA increase HCC cell sensitivity to sorafenib by restoring CYP1A2 expression. Our study provides new insights into the epigenetic regulation of CYP1A2 in HCC and highlights the potential of epigenetic drugs as a therapeutic approach for HCC. Significance Statement This study marks the first exploration of the epigenetic mechanisms underlying CYP1A2 suppression in hepatocellular carcinoma (HCC). Our findings reveal that heightened Dnmt3a expression induces hypermethylation of the CGI at the promoter, coupled with diminished H3K27Ac levels, resulting in the repression of CYP1A2 in HCC. The use of epigenetic drugs such as decitabine (DAC) and trichostatin A (TSA) emerges as a novel therapeutic avenue, demonstrating their potential to restore CYP1A2 expression and enhance sorafenib sensitivity in HCC cells.
5-Formylcytidine (f5C) is one type of post-transcriptional RNA modification, which is known at the wobble position of tRNA in mitochondria and essential for mitochondrial protein synthesis. Here, we show a method to detect f5C modifications in RNA and a transcriptome-wide f5C mapping technique, named f5C-seq. It is developed based on the treatment of pyridine borane, which can reduce f5C to 5,6-dihydrouracil, thus inducing C-to-T transition in f5C sites during PCR to achieve single-base resolution detection. More than 1000 f5C sites were identified after mapping in Saccharomyces cerevisiae by f5C-seq. Moreover, codon composition demonstrated a preference for f5C within wobble sites in mRNA, suggesting the potential role in regulation of translation. These findings expand the scope of the understanding of cytosine modifications in mRNA.
Sorafenib is a multikinase inhibitor capable of facilitating apoptosis, mitigating angiogenesis and suppressing tumor cell proliferation. In late-stage hepatocellular carcinoma (HCC), sorafenib is currently an effective first-line therapy. Unfortunately, the development of drug resistance to sorafenib is becoming increasingly common. This study aims to identify factors contributing to resistance and ways to mitigate resistance. Recent studies have shown that epigenetics, transport processes, regulated cell death, and the tumor microenvironment are involved in the development of sorafenib resistance in HCC and subsequent HCC progression. This study summarizes discoveries achieved recently in terms of the principles of sorafenib resistance and outlines approaches suitable for improving therapeutic outcomes for HCC patients.