Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of Johne’s disease, a chronic emaciating disease of ruminants that causes enormous economic losses to the bovine industry, globally. However, there are still remaining clues to be solved in the pathogenesis and diagnosis of the disease. Therefore, an in vivo murine experimental model was tried to understand responses in early stage of MAP infection by oral and intraperitoneal (IP) routes. In the MAP infection size, and weight of spleen and liver were increased in the IP group compared with oral groups. Severe histopathological changes were also observed in the spleen and liver of IP infected mice at 12 weeks post-infection (PI). Acid-fast bacterial burden in the organs was closely related to histopathological lesions. In the cytokine production from splenocytes of MAP-infected mice, higher amounts of in TNF-α, IL-10, and IFN-γ were produced at early stage of IP-infected mice while IL-17 production was different at time and infected groups. This phenomenon may indicate the immune shift from Th1 to Th17 through the time course of MAP infection. Systemic and local responses in the MAP-infection were analyzed by using transcriptomic analysis in the spleens and mesenteric lymph nodes (MLN). Based on the analysis of biological processes at 6 weeks PI in spleen and MLN in each infection group, canonical pathways were analyzed with ingenuity pathway analysis in the immune responses and metabolism especially lipid metabolism. Infected host cells with MAP increased in the production of proinflammatory cytokines and reduced the availability of glucose at early stage of infection ( p < 0.05). Also, host cells secreted cholesterol through cholesterol efflux to disturb energy source of MAP. These results reveal immunopathological and metabolic responses in the early stage of MAP infection through the development of a murine model.
Abstract Based on the current situation of Korean culture and society, the population of companion animals in South Korea is growing rapidly along with zoonotic risks. The current data regarding zoonotic infections in companion dogs reported in Korea is sparse. This study aims to investigate the seroprevalence of seven potential zoonotic pathogens in companion dogs in South Korea: Anaplasma phagocytophilum , Borrelia burgdoferi , Ehrlichia canis , Coxiella burnetii , Brucella canis , Leptospira spp . and canine influenza A virus. A total of 284 serum samples were collected from 2018 to 2021, and the immunoglobulin G (IgG) antibodies against 7 zoonotic pathogens were detected using enzyme‐linked immunosorbent assays. Samples were divided into five groups and analysed based on age. IgG antibodies against six of the seven pathogens were detected. The highest seropositivity rate was detected for canine influenza A virus exposure (59.1%) for which the rates were the highest in dogs under 1 year old and declined with age. Positivity rates of the other pathogens were relatively low: 1.76% for Leptospira spp ., 1.40% for A. phagocytophilum and E. canis , 1.06% for B. canis and 0.35% for B. burgdoferi . No antibodies against C. burnetii were detected in this study. The exposure of dogs in South Korea to six zoonotic pathogens was serologically confirmed, highlighting a potential risk for human infection. The zoonotic risk of companion dogs cannot be neglected, and implementation of One Health approach should be advocated to establish effective preventive measures.
Abstract Diabetes mellitus (DM) is a progressive, chronic metabolic disorder characterized by high oxidative stress, which can lead to cardiac damage. Methionine sulfoxylation (MetO) of proteins by excessive reactive oxygen species (ROS) can impair the basic functionality of essential cellular proteins, contributing to heart failure. Methionine sulfoxide reductase B2 (MsrB2) can reverse oxidation induced MetO in mitochondrial proteins, so we investigated its role in diabetic cardiomyopathy. We observed that DM-induced heart damage in diabetic mice model is characterized by increased ROS, increased protein MetO with mitochondria structural pathology, and cardiac fibrosis. In addition, MsrB2 was significantly increased in mouse DM cardiomyocytes, supporting the induction of a protective process. Further, MsrB2 directly induces Parkin and LC3 activation (mitophagy markers) in cardiomyocytes. In MsrB2, knockout mice displayed abnormal electrophysiological function, as determined by ECG analysis. Histological analysis confirmed increased cardiac fibrosis and disrupted cardiac tissue in MsrB2 knockout DM mice. We then corroborated our findings in human DM heart samples. Our study demonstrates that increased MsrB2 expression in the heart protects against diabetic cardiomyopathy. Graphic Abstract
Abstract Regulated in development and DNA damage response 1 (REDD1) expression is upregulated in response to metabolic imbalance and obesity. However, its role in obesity-associated complications is unclear. Here, we demonstrate that the REDD1–NF-κB axis is crucial for metabolic inflammation and dysregulation. Mice lacking Redd1 in the whole body or adipocytes exhibited restrained diet-induced obesity, inflammation, insulin resistance, and hepatic steatosis. Myeloid Redd1- deficient mice showed similar results, without restrained obesity and hepatic steatosis. Redd1 -deficient adipose-derived stem cells lost their potential to differentiate into adipocytes; however, REDD1 overexpression stimulated preadipocyte differentiation and proinflammatory cytokine expression through atypical IKK-independent NF-κB activation by sequestering IκBα from the NF-κB/IκBα complex. REDD1 with mutated Lys 219/220 Ala, key amino acid residues for IκBα binding, could not stimulate NF-κB activation, adipogenesis, and inflammation in vitro and prevented obesity-related phenotypes in knock-in mice. The REDD1-atypical NF-κB activation axis is a therapeutic target for obesity, meta-inflammation, and metabolic complications.
Gyeongju City is implementing various cultural tourism projects based on local cultural and landscape resources and is striving to create a maritime tourism base for the east coast of Gyeongju, which is rich in historical and natural resources in addition to the historic district in downtown Gyeongju.However, the east coast of Gyeongju is geographically inaccessible and there are aspects that lack interest and awareness compared to the Gyeongju Historic District.The purpose of this paper is to identify the value and importance of the east coast area of Gyeongju as a cultural landscape resource and to investigate related measures and draws suggestions for a development plan that can overcome biased development plans and geographical weaknesses.To overcome these limitations, the study underscores the value and importance of cultural landscape resources and advocates for inclusive development plans that encompass the distinct attributes of the East Coast region.