Protein kinase Cdelta (PKCdelta) regulates cell apoptosis in a cell- and stimulus-specific manner. Here, we studied the role of PKCdelta in the apoptotic effect of TRAIL in glioma cells. We found that transfection of the cells with a PKCdelta kinase-dead mutant (K376R) or with a small interfering RNA targeting the PKCdelta mRNA increased the apoptotic effect of tumor necrosis factor-related apoptosis inducing ligand (TRAIL), whereas overexpression of PKCdelta decreased it. PKCdelta acted downstream of caspase 8 and upstream of cytochrome c release from the mitochondria. TRAIL induced cleavage of PKCdelta within 2-3 h of treatment, which was abolished by caspase 3, 8, and 9 inhibitors. The cleavage of PKCdelta was essential for its protective effect because overexpression of a caspase-resistant mutant (PKCdeltaD327A) did not protect glioma cells from TRAIL-induced apoptosis but rather increased it. TRAIL induced translocation of PKCdelta to the perinuclear region and the endoplasmic reticulum and phosphorylation of PKCdelta on tyrosine 155. Using a PKCdeltaY155F mutant, we found that the phosphorylation of PKCdelta on tyrosine 155 was essential for the cleavage of PKCdelta in response to TRAIL and for its translocation to the endoplasmic reticulum. In addition, phosphorylation of PKCdelta on tyrosine 155 was necessary for the activation of AKT in response to TRAIL. Our results indicate that PKCdelta protects glioma cells from the apoptosis induced by TRAIL and implicate the phosphorylation of PKCdelta on tyrosine 155 and its cleavage as essential factors in the anti-apoptotic effect of PKCdelta.
Repeated experimental reinfection of two subjects indicates that Helicobacter pylori infection does not promote an immune response protective against future reinfection. Our results highlight the importance of preventing reinfection after eradication, through public health initiatives, and possibly treatment of family members. They indicate difficulties for vaccine development, especially therapeutic vaccines.
Aminoglycoside-modifying enzymes are among the most important mechanisms of resistance to aminoglycoside antibiotics, typically conferring high-level resistance by enzymatic drug inactivation. Previously, we isolated a multidrug-resistant Brucella intermedia strain ZJ499 from a cancer patient, and whole-genome sequencing revealed several putative novel aminoglycoside-modifying enzyme genes in this strain. Here, we report the characterization of one of them that encodes an intrinsic, chromosomal aminoglycoside nucleotidyltransferase designated ANT(9)-Ic, which shares only 33.05% to 47.44% amino acid identity with the most closely related ANT(9)-I enzymes. When expressed in Escherichia coli, ANT(9)-Ic conferred resistance only to spectinomycin and not to any other aminoglycosides tested, indicating a substrate profile typical of ANT(9)-I enzymes. Consistent with this, deletion of ant(9)-Ic in ZJ499 resulted in a specific and significant decrease in MIC of spectinomycin. Furthermore, the purified ANT(9)-Ic protein showed stringent substrate specificity for spectinomycin with a Km value of 44.83 μM and a kcat/Km of 2.8 × 104 M-1 s-1, echoing the above observations of susceptibility testing. In addition, comparative genomic analysis revealed that the genetic context of ant(9)-Ic was conserved in Brucella, with no mobile genetic elements found within its 20-kb surrounding region. Overall, our results demonstrate that ANT(9)-Ic is a novel member of the ANT(9)-I lineage, contributing to the intrinsic spectinomycin resistance of ZJ499. IMPORTANCE The emergence, evolution, and worldwide spread of antibiotic resistance present a significant global public health crisis. For aminoglycoside antibiotics, enzymatic drug modification is the most common mechanism of resistance. We identify a novel chromosomal aminoglycoside nucleotidyltransferase from B. intermedia, called ANT(9)-Ic, which shares the highest identity (47.44%) with the previously known ANT(9)-Ia and plays an important role in spectinomycin resistance of the host strain. Analysis of the genetic environment and origin of ant(9)-Ic shows that the gene and its surrounding region are widely conserved in Brucella, and no mobile elements are detected, indicating that ANT(9)-Ic may be broadly important in the natural resistance to spectinomycin of Brucella species.
We read with great interest the study by Akkaya et al[1] titled "Medial Meniscus Scaffold Implantation in Combination with Concentrated Bone Marrow Aspirate Injection: Minimum 3-Year Follow-Up" in the "Journal of Knee Surgery." The authors should be praised for their well-designed study and exciting results.
The authors' preliminary clinical results have shown that ipsilateral C7 transfer is an effective neurotization procedure for treatment of brachial plexus upper trunk injuries. However, there were temporary muscle weakness and sensory disturbance. To provide safety guidelines for this procedure, the topography of the C7 nerve root and the innervating nerve of its indicator muscle, the thoracodorsal nerve, was studied.
To characterize the molecular structure of IncR plasmid-related sequences, comparative genomic analysis was conducted using 261 IncR plasmid backbone-related sequences. Among the sequences, 257 were IncR plasmids including the multidrug-resistance IncR plasmid pR50-74 from Klebsiella pneumoniae strain R50 of this work, and the other four were from bacterial chromosomes. The IncR plasmids were derived from different bacterial genera or species, mainly Klebsiella pneumoniae (70.82%, 182/257), Escherichia coli (11.28%, 29/257), Enterobacter cloacae (7.00%, 18/257), and Citrobacter freundii (3.50%, 9/257). The bacterial chromosomes carrying IncR plasmid backbone sequences were derived from Proteus mirabilis AOUC-001 and Klebsiella pneumoniae KPN1344, among others. The IncR backbone sequence of P. mirabilis AOUC-001 chromosome shows the highest identity with that of pR50-74. Complex class 1 integrons carrying various copies of ISCR1-sdr-qnrB6-△qacE/sul1 (ISCR1-linked qnrB6 unit) were identified in IncR plasmids. In addition to two consecutive copies of qnrB6-qacE-sul1, the other resistance genes encoded on pR50-74 are all related to mobile genetic elements, such as IS1006, IS26, and the class 1 integron. This study provides a clear understanding of the mobility and plasticity of the IncR plasmid backbone sequence and emphasizes the important role of ISCR in the recruitment of multicopy resistance genes.
To provide a comprehensive overview of temporal trends in cancer incidence during 1973-2010 in urban Shanghai.The estimated annual percent changes (EAPCs) for the whole period and for the time segments in age-standardized incidence rates (ASR) were evaluated with Joinpoint analysis. Age-period-cohort (APC) models were modeled to examine the effects of age, period and birth cohort on cancer incidence.The overall ASR decreased slightly and significantly in males (EAPC of -0.41) but increased significantly in females (EAPC of 0.57) during 1973-2010 in urban Shanghai. The incidence trend was not linear and varied by time segments. During the most recent 10 years (2001-2010), the ASR in males decreased by 1.65% per year and stabilized in females. Incidence rates continued to decline during 1973-2010 for esophagus, stomach, and liver cancer in both sexes, as well as male lung cancer and cervix cancer. It should be noted that it was the first time to document a significant decline in lung cancer incidence among males during 1973-2010 with EAPC of -0.58%, and a notable upward for cervix cancer since 1996 with EAPC of 8.94%. Unfavorable trends in incidence were observed for the most common cancer sites in the 38 years period: colorectum, gallbladder & biliary tract, pancreas, kidney, bladder, brain & central nervous system (CNS), thyroid, non-Hodgkin's lymphoma (NHL), prostate, female breast, corpus uteri, and ovary. APC analysis showed age, period and birth cohort yielded different effects by cancer sites.The observed trends primarily reflect dramatic changes in socioeconomic development and lifestyles in urban Shanghai over the past four decades.