Phosphate (Pi) transporters play critical roles in Pi acquisition and homeostasis. However, little is known about these transporters in oilseed rape. Therefore, the aim of the present study was to characterize the members of the PHT1 gene family in allotetraploid Brassica napus and to analyze their expression profiles in response to environmental stresses. In total, 49 PHT1 family members were identified in B. napus, including 27 genes in the A subgenome and 22 in the C subgenome. Most of the PHT1 proteins were predicted to localize to the plasma membrane. Phylogenetic analysis suggested that the members of the PHT1 gene family can be divided into seven clades, with the introns/exons and protein motifs conserved in each clade. Collinearity analysis revealed that most of the BnaPHT1 genes shared syntenic relationships with PHT1 members in Arabidopsis thaliana, B. rapa, and B. oleracea, and that whole-genome duplication (polyploidy) played a major driving force for BnaPHT1 evolution in addition to segmental duplication. Transcript abundance analysis showed that a broad range of expression patterns of individual BnaPHT1 genes occurred in response to phosphorus (P) deficiency. In addition, the expression levels of BnaPHT1 genes can be regulated by different nutrient stresses, including nitrogen (N), potassium (K), sulfur (S) and iron (Fe) stresses. Moveover, salt and drought stresses can regulate the transcript abundances of BnaPHT1s, as well as phytohormones including auxin and cytokinin. Gene coexpression analysis based on the RNA-seq data implied that BnaPHT1s might cooperate with each other as well as with other genes to regulate nutrient homeostasis in B. napus. Further analysis of the promoters revealed that GT-1, DRE and P1BS elements are widely distributed within the promoter regions of BnaPHT1 genes. Our results indicate that BnaPHT1s might be involved in cross-talk for sensing the external status of P, N, K, S and Fe, as well as salt and drought stresses. Moreover, these processes might be mediated by phytohormones. Our findings provide the first step in the complex genetic dissection of the Pi transport system in plants and implicate multiple transcriptional regulation, which probably refers to new roles of PHT1 genes in B. napus.
Maize is an important crop used for food, feed, and fuel. Abiotic stress is an important factor affecting maize yield. The EPF/EPFL gene family encodes class-specific secretory proteins that play an important role in the response to abiotic stress in plants. In order to explore and utilize the EPF/EPFL family in maize, the family members were systematically identified, and their chromosomal localization, physicochemical properties, cis-acting element prediction in promoters, phylogenetic tree construction, and expression pattern analysis were carried out using bioinformatics techniques. A total of 18 ZmEPF/EPFL proteins were identified in maize, which are mostly alkaline and a small portion acidic. Subcellular localization results showed that ZmEPF6, ZmEPF12, and ZmEPFL2 are localized in the nucleus and cytoplasm. Analysis of cis-acting elements revealed that members of the ZmEPF/EPFL family contain regulatory elements such as light response, anoxic, low temperature, and hormone response regulatory elements. RT-qPCR results showed that these family members are indeed responding to cold stress and hormone treatments. These results of this study provide a theoretical basis for improving the abiotic stress resistance of maize in future research.
The Na+/H+ antiporters (NHXs) are secondary ion transporters to exchange H+ and transfer the Na+ or K+ across membrane, they play crucial roles during plant development and stress responses. To gain insight into the functional divergence of NHX genes in poplar, eight PtNHX were identified from Populus trichocarpa genome. PtNHXs containing 10 transmembrane helices (TMH) and a hydrophilic C-terminal domain, the TMH compose a hollow cylinder to provide the channel for Na+ and H+ transport. The expression patterns and cis-acting elements showed that all the PtNHXs were response to single or multiple stresses including drought, heat, cold, salinity, MV, and ABA. Both the co-expression network and protein-protein interaction network of PtNHXs implying their functional divergence. Interestingly, although PtNHX7 and PtNHX8 were generated by whole genome duplication event, they showed significant differences in expression pattern, protein structure, co-expressed genes, and interacted proteins. Only PtNHX7 interact with CBL and CIPK, indicating PtNHX7 is the primary NHX involved in CBL-CIPK pathway during salt stress responses. Natural variation analysis based on 549 P. trichocarpa individuals indicated the frequency of SNPs in PtNHX7 was significantly higher than other PtNHXs. Our findings provide new insights into the functional divergence of NHX genes in poplar.
Abstract Lauraceae includes the genus Phoebe , and the family is linked to the evolution of magnoliids. We sequenced the genome of Phoebe bournei Nanmu. The assembled genome size was 989.19 Mb, with a contig N50 value of 2.05 Mb. A total of 28,198 protein-coding genes were annotated in P. bournei . Whole-genome duplication (WGD) analysis showed that Lauraceae has experienced two WGD events; the older WGD event occurred just before the divergence of Lauraceae and Magnoliales, and the more recent WGD was shared by all lineages of Lauraceae. The phylogenetic tree showed that magnoliids form a sister clade to monocots and eudicots. We also identified 63 MADS-box genes, including AGL12 -like genes that may be related to the regulation of P. bournei roots and FIN219 -like genes encoding GH3 proteins, which are involved in photomorphogenesis. SAUR50 -like genes involved in light signal-mediated pedicel or stem development were also identified. Four ATMYB46- and three PtrEPSP -homologous genes related to lignin biosynthesis were identified. These genes may be associated with the formation of straight trunks in P. bournei . Overall, the P. bournei reference genome provides insight into the origin, evolution, and diversification of Phoebe and other magnoliids.
Drought is a major threat to maize growth and production. Understanding the molecular regulation network of drought tolerance in maize is of great importance. In this study, two maize inbred lines with contrasting drought tolerance were tested in the field under natural soil drought and well-watered conditions. In addition, the transcriptomes of their leaves was analyzed by RNA-Seq. In total, 555 and 2,558 genes were detected to specifically respond to drought in the tolerant and the sensitive line, respectively, with a more positive regulation tendency in the tolerant genotype. Furthermore, 4,700, 4,748, 4,403 and 4,288 genes showed differential expression between the two lines under moderate drought, severe drought and their well-watered controls, respectively. Transcription factors were enriched in both genotypic differentially expressed genes and specifically responsive genes of the tolerant line. It was speculated that the genotype-specific response of 20 transcription factors in the tolerance line and the sustained genotypically differential expression of 22 transcription factors might enhance tolerance to drought in maize. Our results provide new insight into maize drought tolerance-related regulation systems and provide gene resources for subsequent studies and drought tolerance improvement.
Aspergillus flavus produces mycotoxins especially aflatoxin B1 and infects crops worldwide. As a PHD transcription factor, there is no report on the role of Rum1 in the virulence of Aspergillus spp. yet. This study explored the biological function of Rum1 in A. flavus through the construction of rum1 deletion mutants and rum1 complementation strains with the method of homologous recombination. It was found, in the study, that Rum1 negatively regulates conidiation through abaA and brlA, positively regulates sclerotia formation through nsdC, nsdD, and sclR, triggers aflatoxin biological synthesis, and enhances the activity of amylase. Our findings suggested that Rum1 plays a major role in the growth of mycelia, conidia, and sclerotia production along with aflatoxin biosynthesis in A. flavus.
Dwarf germplasm are valuable in breeding programs.We found a dwarf mutant from the inbred line K36 during multiplication in 2002.A stable inbred Ai 2003 was obtained after successive selfing.It was 62.1cm in plant height with good agronomical performance in Beijing.The test for response to gibberellin(GA) in different stage and dosage showed that Ai 2003 was not sensitive to GA.In order to understand the genetic control of this dwarf material,several crosses between Ai 2003 and normal inbred lines were undertaken to produce F1,F2 or BC1 families.The results showed that this dwarf germplasm was controlled by a major single nuclear recessive gene,which was different from gene Dwarf8(dominant) reported previously.
Seed dormancy is an important adaptive trait to prevent germination occurring at an inappropriate time. The mechanisms governing seed dormancy and germination are complex. Here, we report that FACTOR INTERACTING WITH POLY(A) POLYMERASE 1 (FIP1), a component of the pre-mRNA 3' end processing machinery, is involved in seed dormancy and germination processes in Arabidopsis thaliana. FIP1 is mainly expressed in seeds and the knockout of FIP1 causes reduced seed dormancy, indicating that FIP1 positively influences seed dormancy. Meanwhile, fip1 mutants are insensitive to exogenous ABA during seed germination and early seedling establishment. The terms 'seed maturation' and 'response to ABA stimulus' are significantly enriched in a gene ontology analysis based on genes differentially expressed between fip1-1 and the wild type. Several of these genes, including ABI5, DOG1 and PYL12, show significantly decreased transcript levels in fip1. Genetic analysis showed that either cyp707a2 or dog1-5 partially, but in combination completely, represses the reduced seed dormancy of fip1, indicating that the double mutant cyp707a2 dog1-5 is epistatic to fip1. Moreover, FIP1 is required for CFIM59, another component of pre-mRNA 3' end processing machinery, to govern seed dormancy and germination. Overall, we identified FIP1 as a regulator of seed dormancy and germination that plays a crucial role in governing these processes through the DOG1 and ABA pathways.