Metal–organic frameworks (MOFs) have been considered as a class of promising electrode materials for supercapacitors owing to their large surface area, rich porosity, and variable redox sites; however, direct application of pristine MOFs in energy storage has been largely hindered by their poor electrical conductivity and stability issues. In this work, we demonstrate a facile two-step approach to address the controlled growth of Ni-MOF arrays on the surface of NiCo2O4 nanowires by modulating the formation reaction of MOFs. By taking advantage of the intriguing merits from the NiCo2O4 core and Ni-MOF shell as well as their synergistic effects, the optimized NiCo2O4@Ni-MOF hybrid electrode exhibits boosted electrochemical performance, in terms of high specific capacity (208.8 mA h/g at 2 mA/cm2) and good rate capability. In addition, the assembled flexible solid-state HSC device based on the optimized NiCo2O4@Ni-MOF and activated carbon as the cathode and anode achieves a maximum energy density of 32.6 W h/kg at a power density of 348.9 W/kg without sacrificing its outstanding cycling performance (nearly 100% retention over 6000 cycles at 8 mA/cm2) and mechanical stability, outperforming most recently reported MOF-based HSC devices in an aqueous electrolyte. Our work demonstrates the possibility of exploiting novel MOF-based hybrid arrays as battery-type electrodes with enhanced electrochemical properties, which exhibits great potential in flexible energy storage devices.
Four room-temperature phosphorescent carbonized polymer dots (CPDs) with wide-range tunable lifetimes from 730 ms to 2.26 s are prepared and applied for naked-eye visible multiplexing.
Solar-driven interfacial evaporation is an emerging route for desalination and wastewater treatment with great potential to alleviate freshwater shortages. However, the current solar-driven interfacial evaporation systems generally suffer from complex design, poor customization and salt accumulation issues. Design and preparation of solar-driven interfacial evaporation systems with excellent comprehensive performance and capable of being mass-produced remains a great challenge. Herein, we demonstrate a novel electrospun nanofiber sponge for efficient and sustained solar-driven interfacial evaporation. The nanofibrous structure of its surface can promote the absorption of light, and its interconnected pore structure is conducive to the diffusion of water vapor, thereby improving the evaporation effect. Under 1 sun irradiation (1 kW·m-2), the nanofiber sponge interfacial evaporation system showed an outstanding water evaporation rate (1.57 kg·m-2·h-1) with 95.6% evaporation efficiency. The hierarchical porous structure, super-hydrophilic properties and integrated design of evaporation and mass transfer make it have superior water transport capacity and excellent salt self-discharge performance. Simultaneously, the excellent strength, flexibility, and processability of the nanofiber sponge can realize the customized fabrication of solar interfacial evaporation systems. This work is expected to advance the development of solar-driven interfacial evaporation systems towards compact, independent and portable.
Under solvothermal conditions, the reaction of 4-pyridylacrilic acid (4-hpya) and 2,2′-bipyridine (bpy) with Cu(MeCN)4BF4 gives rise to an unprecedented stable copper(I)-olefin coordination polymer {[(bpy)(4-hpya) Cu(I)](BF4)}n 1 which displays strong red fluorescent emission in the solid state.