Janus membranes with unidirectional transport capacity have shown broad potential across various fields of mass–energy transmission and conversion. However, the underlying mechanisms driving this transport remain unclear. In this study, a three‐stage model—encompassing liquid intrusion, capillary wetting, and liquid transport—is proposed to elucidate the unidirectional liquid transport within Janus membranes. Finite element analysis reveals two key mechanisms: direct contact‐driven liquid intrusion in bilayer structures and surface‐energy‐driven intrusion in gradient structures. It is also demonstrated that capillary forces within the hydrophilic pores predominantly control the second stage, while droplet Laplace pressure dictates continuous liquid transport at the last stage. Furthermore, critical structural parameters that influence the transport process are identified, aligning with experimental observations. These findings lay a theoretical foundation for optimizing the Janus membrane structures and expanding their applications.
Airport gate assignment performance indicator selection is a complicated decision-making problem with strong subjectivity and difficulty in measuring the importance of each indicator. A better selection of performance indicators (PIs) can greatly increase the airport overall benefit. We adopt a multicriteria decision-making approach to quantify qualitative PIs and conduct subsequent selection using the fuzzy clustering method. First, we identify 21 commonly used PIs through literature review and survey. Subsequently, the fuzzy analytic hierarchy process technique was employed to obtain the selection criteria weights based on the relative importance of significance, availability, and generalisability. Further, we aggregated the selection criteria weights and experts’ score to evaluate each PI for the clustering process. The fuzzy-possibilistic product partition c-means algorithm was applied to divide the PIs into different groups based on the three selection criteria as partitioning features. The cluster with highest weights of the centre was identified as the very high-influence cluster, and 10 PIs were identified as a result. This study revealed that the passenger-oriented objective is the most important performance criterion; however, the relevance of the airport/airline-oriented and robustness-oriented performance objectives was highlighted as well. It also offers a scientific approach to determine the objective functions for future gate assignment research. And, we believe, through slight modifications, this model can be used in other airports, other indicator selection problems, or other scenarios at the same airport to facilitate policy making and real situation practice, hence facilitate the management system for the airport.
Recent years have witnessed an exponential growth of model scale in deep learning-based recommender systems---from Google's 2016 model with 1 billion parameters to the latest Facebook's model with 12 trillion parameters. Significant quality boost has come with each jump of the model capacity, which makes us believe the era of 100 trillion parameters is around the corner. However, the training of such models is challenging even within industrial scale data centers. We resolve this challenge by careful co-design of both optimization algorithm and distributed system architecture. Specifically, to ensure both the training efficiency and the training accuracy, we design a novel hybrid training algorithm, where the embedding layer and the dense neural network are handled by different synchronization mechanisms; then we build a system called Persia (short for parallel recommendation training system with hybrid acceleration) to support this hybrid training algorithm. Both theoretical demonstrations and empirical studies with up to 100 trillion parameters have been conducted to justify the system design and implementation of Persia. We make Persia publicly available (at github.com/PersiaML/Persia) so that anyone can easily train a recommender model at the scale of 100 trillion parameters.
Instruction tuning significantly enhances the performance of large language models (LLMs) across various tasks. However, the procedure to optimizing the mixing of instruction datasets for LLM fine-tuning is still poorly understood. This study categorizes instructions into three primary types: NLP downstream tasks, coding, and general chat. We explore the effects of instruction tuning on different combinations of datasets on LLM performance, and find that certain instruction types are more advantageous for specific applications but can negatively impact other areas. This work provides insights into instruction mixtures, laying the foundations for future research.
This paper proposes a collaborative optimization model of car-flow organization for freight trains based on adjacent technical stations to minimize the average dwell time of train cars in a yard. To solve the car-flow organization problems, a priority-based hump sequence, which depends on the cars available in two adjacent technical stations, is adopted. Furthermore, a meta-heuristic algorithm based on the genetic algorithm and the taboo search algorithm is adopted to solve the model, and the introduction of the active scheduling method improves the efficiency of the algorithm. Finally, the model is applied to the car-flow organization problem of two adjacent technical stations, and the results are compared with those from a single technical station without collaboration. The results demonstrate that collaborative car-flow organization between technical stations significantly reduces the average dwell time at the stations, thereby improving the utilization rate of railroad equipment. In addition, the results indicate that the hybrid genetic algorithm can rapidly determine the train hump and marshalling schemes.
Deep learning based models have dominated the current landscape of production recommender systems. Furthermore, recent years have witnessed an exponential growth of the model scale--from Google's 2016 model with 1 billion parameters to the latest Facebook's model with 12 trillion parameters. Significant quality boost has come with each jump of the model capacity, which makes us believe the era of 100 trillion parameters is around the corner. However, the training of such models is challenging even within industrial scale data centers. This difficulty is inherited from the staggering heterogeneity of the training computation--the model's embedding layer could include more than 99.99% of the total model size, which is extremely memory-intensive; while the rest neural network is increasingly computation-intensive. To support the training of such huge models, an efficient distributed training system is in urgent need. In this paper, we resolve this challenge by careful co-design of both the optimization algorithm and the distributed system architecture. Specifically, in order to ensure both the training efficiency and the training accuracy, we design a novel hybrid training algorithm, where the embedding layer and the dense neural network are handled by different synchronization mechanisms; then we build a system called Persia (short for parallel recommendation training system with hybrid acceleration) to support this hybrid training algorithm. Both theoretical demonstration and empirical study up to 100 trillion parameters have conducted to justified the system design and implementation of Persia. We make Persia publicly available (at https://github.com/PersiaML/Persia) so that anyone would be able to easily train a recommender model at the scale of 100 trillion parameters.