Penicillium oxalicum produces an integrated, extracellular cellulase and xylanase system, strictly regulated by several transcription factors. However, the understanding of the regulatory mechanism of cellulase and xylanase biosynthesis in P. oxalicum is limited, particularly under solid-state fermentation (SSF) conditions. In our study, deletion of a novel gene, cxrD (cellulolytic and xylanolytic regulator D), resulted in 49.3 to 2,230% enhanced production of cellulase and xylanase, except for 75.0% less xylanase at 2 days, compared with the P. oxalicum parental strain, when cultured on solid medium containing wheat bran plus rice straw for 2 to 4 days after transfer from glucose. In addition, the deletion of cxrD delayed conidiospore formation, leading to 45.1 to 81.8% reduced asexual spore production and altered mycelial accumulation to various extents. Comparative transcriptomics and real-time quantitative reverse transcription-PCR found that CXRD dynamically regulated the expression of major cellulase and xylanase genes and conidiation-regulatory gene brlA under SSF. In vitro electrophoretic mobility shift assays demonstrated that CXRD bound to the promoter regions of these genes. The core DNA sequence 5'-CYGTSW-3' was identified to be specifically bound by CXRD. These findings will contribute to understanding the molecular mechanism of negative regulation of fungal cellulase and xylanase biosynthesis under SSF. IMPORTANCE Application of plant cell wall-degrading enzymes (CWDEs) as catalysts in biorefining of lignocellulosic biomass into bioproducts and biofuels reduces both chemical waste production and carbon footprint. The filamentous fungus Penicillium oxalicum can secrete integrated CWDEs, with potential for industrial application. Solid-state fermentation (SSF), simulating the natural habitat of soil fungi, such as P. oxalicum, is used for CWDE production, but a limited understanding of CWDE biosynthesis hampers the improvement of CWDE yields through synthetic biology. Here, we identified a novel transcription factor CXRD, which negatively regulates the biosynthesis of cellulase and xylanase in P. oxalicum under SSF, providing a potential target for genetic engineering to improve CWDE production.
The filamentous fungus Penicillium oxalicum is a potential alternative to Trichoderma reesei for industrial production of a complete cellulolytic enzyme system for a bio-refinery. Comparative omics approaches can support rational genetic engineering and/or breeding of filamentous fungi with improved cellulase production capacity. In this study, comparative genomic, transcriptomic and secretomic profiling of P. oxalicum HP7-1 and its cellulase and xylanase hyper-producing mutant EU2106 were employed to screen for novel regulators of cellulase and xylanase gene expression.The 30.62 Mb P. oxalicum HP7-1 genome was sequenced, and 9834 protein-coding genes were annotated. Re-sequencing of the mutant EU2106 genome identified 274 single nucleotide variations and 12 insertion/deletions. Comparative genomic, transcriptomic and secretomic profiling of HP7-1 and EU2106 revealed four candidate regulators of cellulase and xylanase gene expression. Deletion of these candidate genes and measurement of the enzymatic activity of the resultant mutants confirmed the identity of three regulatory genes. POX02484 and POX08522, encoding a putative Zn(II)2Cys6 DNA-binding domain and forkhead protein, respectively, were found to be novel, while PoxClrB is an ortholog of ClrB, a key transcriptional regulator of cellulolytic enzyme gene expression in filamentous fungi. ΔPOX02484 and ΔPOX08522 mutants exhibited significantly reduced β-glucosidase activity, increased carboxymethylcellulose cellulase and xylanase activities, and altered transcription level of cellulase and xylanase genes compared with the parent strain ΔPoxKu70, with Avicel as the sole carbon source.Two novel genes, POX02484 and POX08522, were found and characterized to regulate the expression of cellulase and xylanase genes in P. oxalicum. These findings are important for engineering filamentous fungi to improve cellulase and xylanase production.
Raw-starch-digesting glucoamylases (RSDGs) from filamentous fungi have great commercial values in starch processing; however, the regulatory mechanisms associated with their production in filamentous fungi remain unknown. Penicillium oxalicum HP7-1 isolated by our laboratory secretes RSDG with suitable properties but at low production levels. Here, we screened and identified novel regulators of RSDG gene expression in P. oxalicum through transcriptional profiling and genetic analyses. Penicillium oxalicum HP7-1 transcriptomes in the presence of glucose and starch, respectively, used as the sole carbon source were comparatively analyzed, resulting in screening of 23 candidate genes regulating the expression of RSDG genes. Following deletion of 15 of the candidate genes in the parental P. oxalicum strain ∆PoxKu70, enzymatic assays revealed five mutants exhibiting significant reduction in the production of raw-starch-digesting enzymes (RSDEs). The deleted genes (POX01907, POX03446, POX06509, POX07078, and POX09752), were the first report to regulate RSDE production of P. oxalicum. Further analysis revealed that ∆POX01907 lost the most RSDE production (83.4%), and that POX01907 regulated the expression of major amylase genes, including the RSDG gene POX01356/PoxGA15A, a glucoamylase gene POX02412, and the α-amylase gene POX09352/Amy13A, during the late-stage growth of P. oxalicum. Our results revealed a novel essential regulatory gene POX01907 encoding a transcription factor in controlling the production of RSDE, regulating the expression of an important RSDG gene POX01356/PoxGA15A, in P. oxalicum. These results provide insight into the regulatory mechanism of fungal amylolytic enzyme production.
The ability to adapt to changing environmental conditions is crucial for living organisms, as it enables them to successfully compete in natural niches, a process which generally depends upon protein phosphorylation-mediated signaling transduction. In the present study, protein kinase PoxMKK1, an ortholog of mitogen-activated protein kinase kinase Ste7 in Saccharomyces cerevisiae, was identified and characterized in the filamentous fungus Penicillium oxalicum. Deletion of PoxMKK1 in P. oxalicum ΔPoxKu70 led the fungus to lose 64.4–88.6% and 38.0–86.1% of its plant-polysaccharide-degrading enzyme (PPDE) production on day 4 after a shift under submerged- and solid-state fermentation, respectively, compared with the control strain ΔPoxKu70. In addition, PoxMKK1 affected hypha growth and sporulation, though this was dependent on culture formats and carbon sources. Comparative transcriptomics and real-time quantitative reverse transcription PCR assay revealed that PoxMKK1 activated the expression of genes encoding major PPDEs, known regulatory genes (i.e., PoxClrB and PoxCxrB) and cellodextrin transporter genes (i.e., PoxCdtD and PoxCdtC), while it inhibited the essential conidiation-regulating genes, including PoxBrlA, PoxAbaA and PoxFlbD. Notably, regulons modulated by PoxMKK1 and its downstream mitogen-activated protein kinase PoxMK1 co-shared 611 differential expression genes, including 29 PPDE genes, 23 regulatory genes, and 16 sugar-transporter genes. Collectively, these data broaden our insights into the diverse functions of Ste7-like protein kinase, especially regulation of PPDE biosynthesis, in filamentous fungi.
Summary Physiologically active acylphloroglucinol ( APG ) glucosides were recently found in strawberry ( Fragaria sp.) fruit. Although the formation of the APG aglycones has been clarified, little is known about APG glycosylation in plants. In this study we functionally characterized ripening‐related glucosyltransferase genes in Fragaria by comprehensive biochemical analyses of the encoded proteins and by a RNA interference ( RNA i) approach in vivo . The allelic proteins UGT 71K3a/b catalyzed the glucosylation of diverse hydroxycoumarins, naphthols and flavonoids as well as phloroglucinols, enzymatically synthesized APG aglycones and pelargonidin. Total enzymatic synthesis of APG glucosides was achieved by co‐incubation of recombinant dual functional chalcone/valerophenone synthase and UGT 71K3 proteins with essential coenzyme A esters and UDP ‐glucose. An APG glucoside was identified in strawberry fruit which has not yet been reported in other plants. Suppression of UGT 71K3 activity in transient RNA i‐silenced fruits led to a loss of pigmentation and a substantial decrease of the levels of various APG glucosides and an anthocyanin. Metabolite analyses of transgenic fruits confirmed UGT 71K3 as a UDP ‐glucose: APG glucosyltransferase in planta . These results provide the foundation for the breeding of fruits with improved health benefits and for the biotechnological production of bioactive natural products.
Rapeseed meal is severely restricted in its utilization as unconventional animal feed due to anti-nutritive compounds, such as glucosinolate, that are degraded to toxic nitriles such as 3-butenenitrile and 4-pentenenitrile in animals. Few studies on nitrilases that can degrade glucosinolate-derived nitriles have been reported thus far. In the present study, a nitrilase gene