Introduction: Stress may lead to allostatic overload. Well-being therapy (WBT) might mitigate it by enhancing psychological well-being and protecting from psychological symptoms. Since no reports are available on the use of WBT in allostatic overload, we evaluated online WBT effects in reducing allostatic overload in medical workers during the coronavirus pandemic. Methods: Sixty-six participants with allostatic overload were enrolled and randomly assigned to eight sessions of online WBT (n = 32) or eight sessions of an online psychoeducation program on healthy lifestyle (CON) (n = 34). The primary outcome was the prevalence rate of allostatic overload in the two groups at session 8 (T2). Secondary analyses were performed on changes in the PsychoSocial Index (PSI) and Psychological Well-Being (PWB) scales scores at the same time points. Generalized estimating equation models were employed. Results: The WBT group showed a significantly lower rate of allostatic overload at T2 than the CON group (28.13% vs. 70.59%, p < 0.001); similar results were found at T1, T3, and T4 (p < 0.001). Compared to CON, WBT produced a significant decrease in psychological distress (p < 0.001) and abnormal illness behavior (p = 0.031), as well as a significant improvement in PWB autonomy, environmental mastery, personal growth, positive relations with others, purpose in life, and self-acceptance (p < 0.001). Conclusion: Online WBT may be an effective non-pharmacological therapeutic strategy for individuals with allostatic overload. These findings need to be further validated in different clinical populations.
Smad ubiquitin regulatory factor 2 (Smurf2) is an E3 ubiquitin ligase that is involved in the Smad-mediated TGF-β signaling. TGF-β has been shown to play an important role during normal embryo implantation, but whether Smurf2 is involved in this process has not been reported. This study was first conducted to investigate the expression of Smurf2 transcript and protein in different compartments of the rhesus monkey uteri and placenta during early pregnancy. The results showed that both the cloned partial sequence of Smurf2 gene and the corresponding amino acid residues shared 99% identity with those of human homologs. On day 12 (D12) of pregnancy, strong signals of Smurf2 mRNA were found in basalis glandular epithelium and luminal epithelium, and moderate expressions were detected in functionalis glandular epithelium. During early villi stage and villi placental stage, Smurf2 mRNAs were mainly localized in the placenta villi, trophoblastic column, trophoblastic shell, and basalis glandular epithelium. There appeared strong staining signals in the arterioles on D26 of pregnancy, but faint staining signals on D18 of pregnancy. No specific staining of Smurf2 mRNA was observed in stromal cells and myometrium. The expression pattern of Smurf2 protein was generally similar to that of its mRNA. These results provide the first evidence that Smurf2 may play specific roles in glandular secretion, trophoblastic cell invasion, and placentation through mediating the expression of the related proteins of TGF-β signaling pathway during early pregnancy.
Background Type II alveolar epithelial cell (AEC II), in addition to its roles in maintaining lung homeostasis, takes an active role in inflammatory response during acute lung injury (ALI). Ca 2+ /calmodulin-dependent protein kinase IV (CaMK4) activated by Ca 2+ /calmodulin signaling, has been implicated in immune responses. This study was to investigate the roles of CaMK4 in the development of ALI and the underlying mechanisms. Methods CaMK4 inhibitor KN-93 was used to investigate the effects of CaMK4 on NLRP3 inflammasome activation. The effects of KN-93 on disease development of lipopolysaccharide (LPS)-induced ALI were also evaluated. The role of CaMK4 on NLRP3 inflammasome activation was explored in human AEC II cell line A549 using KN-93 or CaMK4 siRNA. NLRP3 inflammasome activation was measured by histology immunofluorescence and Western blot. IL-1β and IL-18 were measured by ELISA. Results Phosphorylation of CaMK4 and the expression of NLRP3 and Caspase-1 p20 were increased in the lungs of LPS-induced ALI mice, which was suppressed by KN-93 as measured by Western blot. Further, the activation of NLRP3 inflammasome was detected in AEC II from patients with acute respiratory distress syndrome (ARDS) and LPS-induced ALI mice. In vitro , inhibition or silencing CaMK4 in AEC II significantly inhibited NLRP3 inflammasome activation, resulting in reduced IL-1β production. The inhibition of NLRP3 inflammasome and decreased IL-1β/IL-18 production by KN-93 led to reduced inflammatory infiltration and ameliorated lung injury in LPS-induced ALI mice. Conclusion CaMK4 controls the activation of NLRP3 inflammasome in AEC II during LPS-induced ALI. CaMK4 inhibition could be a novel therapeutic approach for the treatment of ALI.
<p>Genes, relevant to oxidative stress, senescence, or ER stress, which are altered due to DHHC3 ablation. Supplemental references, applicable to these tables, are also included.</p>
Abstract Background Trimethylamine-N-Oxide (TMAO) is believed to be linked to increased likelihood of cardiovascular disease. While probiotics have shown limited effectiveness in reducing TMAO levels, the potential of postbiotics remains underexplored. This study aimed to evaluate the impact of Akkermansia muciniphila ( A. muciniphila ) postbiotic administration on choline-induced TMAO production in mice by modifying the gut microbiota. Methods Female C57BL/6J mice were divided into six groups, including a control group, high-choline diet group, live A. muciniphila probiotic group, pasteurized A. muciniphila postbiotic group, sodium butyrate group, and sodium propionate group. Various measurements and analyses were conducted, including TMAO and TMA levels in serum, urine, and cecal contents, as well as the expression of FXR and FMO3 in liver tissues. Additionally, metabolic parameters, body weight, serum lipid profile, hepatic protein expression (FMO3, FXR, CutC, and CutD), and gut microbiota composition were assessed. Results Administration of A. muciniphila postbiotic significantly reduced choline-induced plasma TMAO levels in mice. Furthermore, improvements in serum lipid profiles and liver enzyme levels suggested potential enhancements in lipid metabolism and liver function. The study also observed modulation of specific proteins related to TMAO production and metabolism, including CutC and CutD. Conclusion The findings highlight the potential of A. muciniphila postbiotics as a dietary strategy for mitigating cardiovascular disease risk by modulating the gut-TMAO axis. Postbiotics, particularly A. muciniphila , offer advantages over probiotics and warrant further investigation for their therapeutic applications in gastrointestinal and metabolic disorders. Graphical Abstract
[Objective] The research aimed to study their contents under different light quality which is of great interest to Aloe arborescens planting.[Methods] Anthraquinones of Aloe arborescens were studied by the methods of plant chemistry and HPLC.[Results] Compared with the control(white light),anthraquinones,aloin and aloe-emodin contents were increased under red light,blue light and yellow light.Yellow light is more favourable to the accumulation of total anthraquinones,aloin than other light,blue light is favourable to the accumulation of aloe-emodin.[Conclusion] Results of the study may provide references for aloe planting in North China.