The Asian musk shrew (shrew) is a new reservoir of a rat hepatitis E virus (HEV) that has been classified into genotype HEV-C1 in the species Orthohepevirus C. However, there is no information regarding classification of the new rat HEV based on the entire genome sequences, and it remains unclear whether rat HEV transmits from shrews to humans. We herein inoculated nude rats (Long-Evans rnu/rnu) with a serum sample from a shrew trapped in China, which was positive for rat HEV RNA, to isolate and characterize the rat HEV distributed in shrews. A rat HEV strain, S1129, was recovered from feces of the infected nude rat, indicating that rat HEV was capable of replicating in rats. S1129 adapted and grew well in PLC/PRF/5 cells, and the recovered virus (S1129c1) infected Wistar rats. The entire genomes of S1129 and S1129c1 contain four open reading frames and share 78.3–81.8% of the nucleotide sequence identities with known rat HEV isolates, demonstrating that rat HEVs are genetically diverse. We proposed that genotype HEV-C1 be further classified into subtypes HEV-C1a to HEV-C1d and that the S1129 strain circulating in the shrew belonged to the new subtype HEV-C1d. Further studies should focus on whether the S1129 strain infects humans.
Hepatitis E virus (HEV) causes acute and fulminant hepatitis worldwide. Although enveloped (e) and non-enveloped (ne) forms of HEV have been discovered, host factors involved in infection, including receptors, remain to be elucidated. Here, we identified integrin α3 (encoded by ITGA3), a protein that binds and responds to the extracellular matrix, as an essential host factor for HEV infection. Integrin α3 expression was lower in four HEV-non-permissive cell subclones than in an HEV-permissive subclone. ITGA3 knockout cells lost HEV permissibility, suggesting that integrin α3 is critical for HEV infection. Stable expression of integrin α3 in an HEV-non-permissive subclone provided permissibility only to infection by neHEV; expression of integrin α3 lacking the ectodomain did not. Direct interaction between neHEV and the integrin α3 ectodomain was confirmed by co-precipitation using a soluble integrin α3-Fc. These results strongly suggest that integrin α3 is a key molecule for cellular attachment and entry of neHEV.
Since Mongolian gerbils are broadly susceptible to hepatitis E virus (HEV), including genotypes 1, 4, 5, and 8 (HEV-1, HEV-5, HEV-5, and HEV-8) and rat HEV, they are a useful small animal model for HEV. However, we have observed that the subtypes HEV-3k and HEV-3ra in genotype 3 HEV (HEV-3) were not infected efficiently in the gerbils. A small-animal model for HEV-3 is also needed since HEV-3 is responsible for major zoonotic HEV infections. To investigate whether gerbils can be used as animal models for other subtypes of HEV-3, we injected gerbils with five HEV-3 subtypes (HEV-3b, -3e, -3f, -3k, and -3ra) and compared the infectivity of the subtypes. We detected viral RNA in the gerbils' feces. High titers of anti-HEV IgG antibodies in serum were induced in all HEV-3b/ch-, HEV-3f-, and HEV-3e-injected gerbils. Especially, the HEV-3e-injected animals released high levels of viruses into their feces for an extended period. The virus replication was limited in the HEV-3b/wb-injected and HEV-3k-injected groups. Although viral RNA was detected in HEV-3ra-injected gerbils, the copy numbers in fecal specimens were low; no antibodies were detected in the sera. These results indicate that although HEV-3's infectivity in gerbils depends on the subtype and strain, Mongolian gerbils have potential as a small-animal model for HEV-3. A further comparison of HEV-3e with different genotype strains (HEV-4i and HEV-5) and different genera (rat HEV) revealed different ALT elevations among the strains, and liver damage occurred in HEV-4i- and HEV-5-infected but not HEV-3e- or rat HEV-infected gerbils, demonstrating variable pathogenicity across HEVs from different genera and genotypes in Mongolian gerbils. HEV-4i- and HEV-5-infected Mongolian gerbils might be candidate animal models to examine HEV's pathogenicity.