The demand for licorice and its natural product derivatives in domestic and foreign market is considerably huge. The core production areas of licorice are covered with salinity and drought land in northwestern China. Studies have shown that suitable environmental stress can promote the accumulation of glycyrrhizin and liquiritin to improve its quality as medicinal materials. However, there are few reports on other bioactive constituents of licorice, not to mention their dynamic accumulation under stressed conditions. To explore the quality formation of licorice from the perspective of salt influence, a reliable method based on ultra-fast liquid chromatography tandem triple quadrupole mass spectrometry (UFLC–MS/MS) was established for simultaneous determination of sixteen bioactive constituents, including triterpenoids, flavonoids, chalcones and their glycosides. Physiological experiments were performed to investigate salt tolerance of licorice under different salinity treatments. The expressions of crucial genes (bAS and CHS), key enzymes of triterpenoid and flavonoid synthesis, were also tested by qRT-PCR. Our study found that 50 mM NaCl treatment (low stress) was the most favorable to promote the accumulation of bioactive constituents in the long term, without harming the plants. Flavonoid accumulation of non-stressed and low-stressed groups became different in the initial synthesis stage, and glycosyltransferases may have great influence on their downstream synthesis. Furthermore, bAS and CHS also showed higher levels in low-stressed licorice at harvest time. This work provides valuable information on dynamic variations in multiple bioactive constituents in licorice treated by salt and insight into its quality formation under stressed conditions.
Background Bullous pemphigoid (BP) is an autoimmune blistering disorder that predominantly affects the elderly. As the main treatment for BP, systemic corticosteroids are often limited by their side effects. Safer treatment modalities are therefore needed. Dupilumab is a biologic agent used to treat BP in recent years. Methods Medical records of patients with moderate-to-severe BP were retrospectively reviewed. Twenty-four patients were included (follow-up period: 32 weeks), eight of whom received dupilumab in combination with methylprednisolone and azathioprine (dupilumab group) while the other 16 patients received methylprednisolone and azathioprine (conventional group). Response to dupilumab was evaluated by comparison of several parameters (time to stop new blister formation, time to reduce the systemic glucocorticoids to minimal dose, and total amount of methylprednisolone). Results The median age of patients in the dupilumab and conventional groups were 64.50 years (range: 22–90 years) and 64.50 years (range: 17–86 years), respectively. The median duration of disease before admission in the dupilumab group was 2 months (range: 1–240 months) and 2.5 months (range: 1–60 months) in the conventional group. The median time to stop new blister formation was 8 days (range: 1–13 days) and 12 days (range: 5–21 days) in patients of the dupilumab and conventional groups, respectively ( p = 0.028 by Kaplan-Meier analysis). In addition, the median time to reduce the systemic glucocorticoids to minimal dose (methylprednisolone 0.08 mg/kg/day) was 121.5 and 148.5 days for the dupilumab and conventional therapy groups, respectively ( p = 0.0053 by Kaplan-Meier analysis). The median total amount of methylprednisolone (at the time of reaching the minimal dose) used in the dupilumab group was 1,898 mg (range: 1,624–2,932 mg) while the cumulative dose of conventional group was 2,344 mg (range: 1,708–4,744 mg) ( p = 0.036 by Mann-Whitney U test). The median total amount of azathioprine (at the time of reaching the minimal dose) used in dupilumab group was 8,300 mg (range: 7,100–10,400 mg) while the total dose of conventional group was 10,300 mg (range: 8,900–14,400 mg) ( p = 0.0048 by Mann-Whitney U test). No adverse event related to dupilumab was recorded. Conclusions Dupilumab in addition to methylprednisolone and azathioprine seems superior to methylprednisolone/azathioprine alone in controlling disease progression and accelerating the tapering of glucocorticoids.
The Large High Altitude Air Shower Observatory project is proposed to study high energy gamma ray astronomy ( 40 GeV-1 PeV ) and cosmic ray physics ( 20 TeV-1 EeV ). The wide field of view Cherenkov telescope array, as a component of the LHAASO project, will be used to study energy spectrum and compositions of cosmic ray by measuring the total Cherenkov light generated by air showers and shower maximum depth. Two prototype telescopes have been in operation since 2008. The pointing accuracy of each telescope is crucial to the direction reconstruction of the primary particles. On the other hand the primary energy reconstruction relies on the shape of the Cherenkov image on the camera and the unrecorded photons due to the imperfect connections between photomultiplier tubes. UV bright stars are used as point-like objects to calibrate the pointing and to study the optical properties of the camera, the spot size and the fractions of unrecorded photons in the insensitive areas of the camera.
Licorice (Glycyrrhiza uralensis Fisch) possesses a substantial share of the global markets for its unique sweet flavor and diverse pharmacological compounds. Cultivated licorice is widely distributed in northwest regions of China, covered with land with a broad range of salinities. A preliminary study indicated that suitable salt stress significantly increased the content of bioactive constituents in licorice. However, the molecular mechanisms underlying the influence of salinity on the accumulation of these constituents remain unclear, which hinders quality breeding of cultivated licorice. In our study, flavonoid-related structural genes were obtained, and most of them, such as phenylalanine ammonia-lyases, cinnamate 4-hydroxylases, 4-coumarate: CoA ligases, chalcone synthases, chalcone–flavanone isomerase, and flavonol synthase, showed high levels after salt treatment. In the biosynthesis of glycyrrhizin, three key enzymes (bAS, CYP88D6, and CYP72A154) were identified as differentially expressed proteins and remarkably upregulated in the salt-stressed group. Combining these results with the contents of 14 bioactive constituents, we also found that the expression patterns of those structural proteins were logically consistent with changes in bioactive constituent profiles. Thus, we believe that suitable salt stress increased the accumulation of bioactive constituents in licorice by upregulating proteins involved in the related biosynthesis pathways. This work provided valuable proteomic information for unraveling the molecular mechanism of flavonoid and glycyrrhizin metabolism and offered fundamental resources for quality breeding in licorice.
Licorice is extensively applied in food as well as herbal medicine across the world, possessing a substantial share in the global market. It has made great progress in chemical and pharmacological research in recent years. Currently, Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat., and Glycyrrhiza glabra L. were officially used as Gan-Cao according to the Chinese Pharmacopoeia. Accumulating evidence demonstrated three varieties of licorice have their own special compounds except for two quality markers set by Pharmacopoeia, providing great possibility for better understanding their characteristics, evaluating quality of each species and studying biosynthesis mechanisms of species–specific compounds. As a special “guide drug” in clinic, licorice plays an important role in Chinese herbal formulas. The interaction between licorice with other ingredients and their metabolism in vivo should also be taken into consideration. In addition, draft genome annotation, and success of the final step of glycyrrhizin biosynthesis have paved the way for biosynthesis of other active constituents in licorice, a promising beginning of solving source shortage. Accordingly, we comprehensively explored the nearly 400 chemical compounds found in the three varieties of licorice so far, systematically excavated various pharmacological activities, including metabolism via CYP450 system in vivo, and introduced the complete biosynthesis pathway of glycyrrhizin in licorice. The review will facilitate the further research toward this herbal medicine.
Licorice has long been regarded as one of the most popular herbs, with a very wide clinical application range. Whether being used alone or as an ingredient in prescription, it has an important role which cannot be ignored. However, the efficacy and chemical constituents of licorice will change after honey-processing. Therefore, it is necessary to find quality markers before and after honey-processing to lay the foundation for a comprehensive evaluation of the differences between raw and processed licorice pieces. HPLC-DAD was employed to establish fingerprints of raw and processed licorice. Multivariate statistical analysis methods including principal component analysis(PCA) and orthogonal partial least squares discrimination analysis(OPLS-DA) were applied to screen out the differential components before and after processing of licorice. Based on network pharmacology, the targets and pathways corresponding to the differential components were analyzed with databases such as Swiss Target Prediction and Metascape, and the component-target-pathway diagram was constructed with Cytoscape 3.6.0 software to predict the potential quality markers. A total of 17 common peaks were successfully identified in the established fingerprint, and seven differential components were selected as potential quality markers(licoricesaponin G2, glycyrrhizic acid, liquiritigenin, liquiritin, isoliquiritin, liquiritin apioside and isoliquiritigenin). The HPLC fingerprint method proposed in this study was efficient and feasible. The above seven differential chemical components screened out as potential quality markers of licorice can help to improve and promote the overall quality. These researches offer more sufficient theoretical basis for scientific application of licorice and its corresponding products.
In a group case series, the clinical characteristics of congenital membranous cataract in children were studied to establish a system of classification and determine the surgical method suited for each type.Children (18 eyes) with congenital membranous cataract were examined by slit lamp, ultrasound biomicroscopy, and operating microscopy to classify cataracts. The clinical characteristics of congenital membranous cataract and its feature related to the surgical method were analyzed.Five major types of congenital membranous cataracts were classified. All of the surgeries were successful. Anterior and posterior capsulorhexis was performed using Klöti RF capsulotomy tips. The capsular flap was removed, and anterior vitrectomy was performed using a vitrectomy cutter. Postoperative complications included posterior capsule opacification in 16.7% of the patients.Ultrasound biomicroscopy was used successfully to classify congenital membranous cataracts prior to surgery. Anterior and posterior capsulorhexis was performed using Klöti RF capsulotomy tips, and capsulectomy was performed using a vitrectomy cutter. These were effective techniques and should be considered for congenital membranous cataract removal surgery. This trial is registered with registration number chiCTR-OOC-17010913.
Thirty-two batches of cultivated and wild Glycyrrhiza uralensis were obtained from three geographical regions. Comparative study of water characteristic components of G. uralensis from three geographical origins was conducted by PCA,OPLS-DA chemical pattern recognition combined with LC-TOF/MS and muti-component analysis. The similarity of fingerprints of 32 batches of medicinal materials ranged from 0. 903 to 0. 999. Patterns recognition could be used to distinguish cultivated G. uralensis in Gansu and Xinjiang areas from cultivated and wild plants in Inner Mongolia. Then a total of thirty-one common constituents were identified by LC-TOF/MS analysis coupled with standard compounds information. The contents of four flavonoid glycosides and five saponins were determinated by HPLC and compared using One-way ANOVA. The results showed that there was no significant difference in the contents of 5 triterpenoid saponins among the three regions,but the contents of 4 flavonoid saponins showed the trend of Inner Mongolia >Gansu≈Xinjiang( P<0. 05). In the same Inner Mongolia region,the contents of 4 flavonoid glycosides and 5 triterpenoid saponins in wild plant was significantly higher than that in cultivated plants( P<0. 01). In addition,the contents of liquiritin,isoliquiritin,licorice-saponin A_3,22β-acetoxyl-glycyrrhizic acid and uralsaponin B in Gansu and Xinjiang were obviously lower than those in Inner Mongolia,but the contents of glycyrrhizic acid,the main component of G. uralensis,were not different in the three geographical regions. In Inner Mongolia,the contents of liquiritin,isoliquiritin,licorice-saponin A_3,licorice-saponin G_2 and glycyrrhizic acid in wild plants were significantly higher than those in cultivated plants. In conclusion,qualitative/quantitative analysis of multi-index components combined with pattern recognition could effectively evaluate the quality of cultivated and wild licorice in different regions. It was helpful for us to understand the reality of licorice in different regions,and provided scientific basis for the development and comprehensive utilization of licorice resources.