Abstract Background: Comprehensive genomic and tumor immune microenvironment (TIME) analysis of T1 lung adenocarcinoma (LAD) may provide new insights into the biology of lymph node metastasis (LNM), thereby guiding surgical procedures and perioperative treatment. Methods: A total of 212 cases of T1 LAD were included, of which 174 cases underwent whole exome sequencing to assess gene mutation and tumor mutation burden (TMB). Tumor mutation score (TMS) was constructed from LNM identified by LASSO regression. Immunohistochemical staining was performed to assess PD-L1 levels, tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs) densities. Validation and supplementation were performed by RNA sequencing data from the TCGA database. Results: A total of 25 genes were associated with the risk of LNM, of which STK11, NOTCH2, RHBDF2, EGFR, and CYP2D6 could be validated by RNA sequencing. The model predicted LNM (AUC = 0.904) and 2-year recurrence and metastasis (AUC = 0.700). Besides, TILs were negatively correlated with LNM of T1 LAD, while TAMs were positively (p<0.05). Moreover, the TMS was correlated with the TIME, particularly TAMs(r=0.331, p<0.001). Conclusions: Tumor gene mutation promotes lymph node metastasis by changing the TIME, especially TAMs. Predictive models can identify high-risk patients and provide evidence for future studies of perioperative management. Citation Format: Fang Wu, Yue Pan, Chunhong Hu, Chen Chen, Wenliang Liu, Songqing Fan, Long Shu, Lishu Zhao, Yucheng Fu, Sujuan Zhang, Junqi Liu, Yue Zeng, Yurong Peng, Hongjing Zang, Chao Deng, Zhenhua Qiu, Fang Ma, Fenglei Yu, Xianling Liu, Lijuan Liu, Lingling Yang, Yang Shao. Genomic profiles and immune cell infiltration landscapes for lymph node metastasis in T1 lung adenocarcinoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 2100.
The immune checkpoint inhibitors (ICIs) have achieved great success in the treatment of non-small cell lung cancer (NSCLC) patients. However, the response rate is low. The molecular mechanism involved in the effectiveness of ICIs remains to be elucidated.ATRX mutation incidence among human cancers was analyzed from TCGA database. Atrx-deficient Lewis lung cancer cell line (LLC-sgAtrx) was established via AAV-CRISPR. Subcutaneous and metastasis models were established by subcutaneous and intravenous injection of LLC-sgAtrx and LLC-sgNTC cells into female C57BL/6 mice. The mice were treated with anti-PD1, anti-CLTA4 or Rat IgG2a. Tumor volume was determined by Vernier calipers and the IVIS imaging system. The proportions of CD3+ T cells, CD45+ immune cells, and the expression of pMHC I and PDL1 were determined by flow cytometry. The T cell cytotoxicity was determined by co-culture experiment.TCGA data showed that Atrx is a tumor suppressor mutated at high frequency among various human cancers. The tumor volume of mice bearing LLC-sgAtrx was significantly shrinked and the median survival of mice was significantly longer after anti-PD1 and anti-CTLA4 treatment. Flowcytometry results showed that Atrx deficiency increase the penetration of CD3+ T cell into the tumor microenvironment and enhanced antigen presentation after IFNγ stimulation. Additionally, the tumor cells with Atrx deficiency were more easily to be damaged by T cells under IFNγ stimulation.The present study demonstrated that Atrx deficiency sensitize lung cancer cells to ICIs by multiple mechanisms. And ATRX may serve as a promising biomarker for ICIs which helps patient stratification and decision making.
Abstract Background Aberrant DNA methylation may offer opportunities in revolutionizing cancer screening and diagnosis. We sought to identify a non-invasive DNA methylation-based screening approach using cell-free DNA (cfDNA) for early detection of hepatocellular carcinoma (HCC). Methods Differentially, DNA methylation blocks were determined by comparing methylation profiles of biopsy-proven HCC, liver cirrhosis, and normal tissue samples with high throughput DNA bisulfite sequencing. A multi-layer HCC screening model was subsequently constructed based on tissue-derived differentially methylated blocks (DMBs). This model was tested in a cohort consisting of 120 HCC, 92 liver cirrhotic, and 290 healthy plasma samples including 65 hepatitis B surface antigen-seropositive (HBsAg+) samples, independently validated in a cohort consisting of 67 HCC, 111 liver cirrhotic, and 242 healthy plasma samples including 56 HBsAg+ samples. Results Based on methylation profiling of tissue samples, 2321 DMBs were identified, which were subsequently used to construct a cfDNA-based HCC screening model, achieved a sensitivity of 86% and specificity of 98% in the training cohort and a sensitivity of 84% and specificity of 96% in the independent validation cohort. This model obtained a sensitivity of 76% in 37 early-stage HCC (Barcelona clinical liver cancer [BCLC] stage 0-A) patients. The screening model can effectively discriminate HCC patients from non-HCC controls, including liver cirrhotic patients, asymptomatic HBsAg+ and healthy individuals, achieving an AUC of 0.957(95% CI 0.939–0.975), whereas serum α-fetoprotein (AFP) only achieved an AUC of 0.803 (95% CI 0.758–0.847). Besides detecting patients with early-stage HCC from non-HCC controls, this model showed high capacity for distinguishing early-stage HCC from a high risk population (AUC=0.934; 95% CI 0.905–0.963), also significantly outperforming AFP. Furthermore, our model also showed superior performance in distinguishing HCC with normal AFP (< 20ng ml −1 ) from high risk population (AUC=0.93; 95% CI 0.892–0.969). Conclusions We have developed a sensitive blood-based non-invasive HCC screening model which can effectively distinguish early-stage HCC patients from high risk population and demonstrated its performance through an independent validation cohort. Trial registration The study was approved by the ethic committee of The Second Xiangya Hospital of Central South University (KYLL2018072) and Chongqing University Cancer Hospital (2019167). The study is registered at ClinicalTrials.gov(# NCT04383353 ).
Background PD-1/PD-L1 immune checkpoint inhibitors are currently the most commonly utilized agents in clinical practice, which elicit an immunostimulatory response to combat malignancies. However, all these inhibitors are currently administered via injection using antibody-based therapies, while there is a growing need for oral alternatives. Methods This study has developed and synthesized exosome-wrapped gold–peptide nanocomplexes with low immunogenicity, which can target PD-L1 and activate antitumor immunity in vivo through oral absorption. The Super PDL1 exo was characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and gel silver staining. The transmembrane ability of Super PDL1 exo was evaluated by flow cytometry and immunofluorescence. Cell viability was determined using the Cell Counting Kit-8 (CCK-8) assay. ELISA experiments were conducted to detect serum and tissue inflammatory factors, as well as serum biochemical indicators. Tissue sections were stained with H&E for the evaluation of the safety of Super PDL1 exo . An MC38 colon cancer model was established in immunocompetent C56BL/6 mice to evaluate the effects of Super PDL1 exo on tumor growth in vivo . Immunohistochemistry (IHC) staining was performed to detect cytotoxicity factors such as perforin and granzymes. Results First, Super PDL1 was successfully synthesized, and milk exosome membranes were encapsulated through ultrasound, repeated freeze–thaw cycles, and extrusion, resulting in the synthesis of Super PDL1 exo . Multiple characterization results confirmed the successful synthesis of Super PDL1 exo nanoparticles. Furthermore, our data demonstrated that Super PDL1 exo exhibited excellent colloidal stability and superior cell transmembrane ability. In vitro and in vivo experiments revealed that Super PDL1 exo did not cause damage to multiple systemic organs, demonstrating its good biocompatibility. Finally, in the MC38 colon cancer mouse model, it was discovered that Super PDL1 exo could inhibit the progression of colon cancer, and this tumor-suppressive effect was mediated through the activation of tumor-specific cytotoxic T lymphocyte (CTL)-related immune responses. Conclusion This study has successfully designed and synthesized an oral nanotherapeutic, Super PDL1 exo , which demonstrates small particle size, excellent colloidal stability, transmembrane ability in tumor cells, and biocompatibility. In vivo experiments have shown that it effectively activates T-cell immunity and exerts antitumor effects.
The metabolic markers and differentially expressed genes (DEGs) related to fructo-oligosaccharide (FOS) were screened, and the response of FOS to the ileum metabolic pathway of Taiping chickens was analysed.Prebiotic are widely used in agricultural breeding for care and maintenance of animal health, especially FOS. Metabonomics evaluation of ileum of Taiping chicken ultra-performance liquid chromatography-quadruple time of-flight high-sensitivity mass spectrometry showed that 93 differentially altered metabolites were identified and divided into eight categories, of which organic acids and derivatives was the most important one. Transcriptomic analysis showed that DEGs were mainly enriched in drug metabolism-cytochrome p450, metabolism of xenobiotics by cytochrome p450, retinol metabolism and fat digestion and absorption. Integrated analysis of metabolite profiles and gene expression revealed that the significantly up-regulated GSTT1 was significantly correlated with most of the different lipid metabolites, suggesting that GSTT1 may play an important role in FOS regulation of lipid metabolism.The results of this study suggest that supplementation of FOS can have a positive effect on gut metabolites, which may contribute to the overall health with indigenous chickens.Insight into the responses of intestinal prebiotics of Taiping chicken is helpful to understand the role of prebiotics in maintaining intestinal microflora balance and improving immune response and productivity of poultry from the molecular and metabolic levels.
Peptidylarginine deiminase (PAD) catalyzes the conversion of arginine residues to citrulline residues, termed citrullination. Recent studies have suggested that PAD isoform 2 (PADI2) plays an important role in tumors, although its tumorigenic effect and mechanism are largely unknown.Immunohistochemistry and enzyme-linked immunosorbent assay (ELISA) were used to investigate the expression level of PADI2 in various tumor tissues and patient blood samples, respectively. MNK-45 and Bel-7402 tumor cell lines originating from gastric and liver tumors, respectively, were treated with anti-PADI2 siRNA, and the subsequent cell proliferation, apoptosis and migration were observed. Polymerase chain reaction (PCR) arrays, including Cancer PathwayFinder, Oncogenes and Tumor Suppressor Genes, p53 Signaling Pathway, Signal Transduction Pathway and Tumor Metastasis PCR arrays, were used to investigate the tumorigenic pathway of PADI2 in the siRNA-treated tumor cells. This analysis was verified by real-time PCR.Immunohistochemistry detected significantly increased expression of PADI2 in invasive breast ductal carcinoma, cervical squamous cell carcinoma, colon adenocarcinoma, liver hepatocellular carcinoma, lung cancer, ovarian serous papillary adenocarcinoma and papillary thyroid carcinoma samples. ELISA detected a twofold increase in PADI2 expression in the blood of 48.3% of patients with liver cancer, 38% of patients with cervical carcinoma and 32% of patients with gastric carcinoma. Increased apoptosis and decreased cell proliferation and migration were observed in the anti-PADI2 siRNA-treated MNK-45 cells, and increased cell proliferation and migration and decreased apoptosis were observed in the treated Bel-7402 cells with suppressed PADI2 expression. PCR arrays and real-time PCR detected significantly decreased CXCR2 and EPO expression in the MNK-45 cells and Bel-7402 cells, respectively, with the anti-PADI2 siRNA treatments.PADI2 expression is increased in many types of tumor tissues and patient blood samples. PADI2 may advance abnormal cell behavior in gastric cancers by mediating CXCR2, a well-known gene that stimulates cell proliferation and invasion. However, PADI2 might have deleterious effects on tumor growth and metastasis in liver tumor cells by regulating the expression of EPO, a gene with controversial functions in tumor growth. The results suggest that the effect of PADI2 on tumorigenesis is multifactorial, depending on the tumor type.
Cisplatin (DDP) -based chemotherapy is a standard strategy for cervical cancer, while chemoresistance remains a huge challenge. Copper transporter protein 1 (CTR1), a copper influx transporter required for high affinity copper (probably reduced Cu I) transport into the cell, reportedly promotes a significant fraction of DDP internalization in tumor cells. In the present study, we evaluated the function of CTR1 in the cell proliferation of cervical cancer upon DDP treatment. MicroRNAs (miRNAs) have been regarded as essential regulators of cell proliferation, apoptosis, migration, as well as chemoresistance. By using online tools, we screened for candidate miRNAs potentially regulate CTR1, among which miR-130a has been proved to promote cervical cancer cell proliferation through targeting PTEN in our previous study. In the present study, we investigated the role of miR-130a in cervical cancer chemoresistance to DDP, and confirmed the binding of miR-130a to CTR1. SOX9 also reportedly act on cancer chemoresistance. In the present study, we revealed that SOX9 inversely regulated miR-130a through direct targeting the promoter of miR-130a. Consistent with previous studies, SOX9 could affect cervical cancer chemoresistance to DDP. Taken together, we demonstrated a SOX9/miR-130a/CTR1 axis which modulated the chemoresistance of cervical cancer cell to DDP, and provided promising targets for dealing with the chemoresistance of cervical cancer.