Adaptive rewiring of cancer energy metabolism has received increasing attention. By binding with LDLs, LDLRs make most of the circulating cholesterol available for cells to utilize. However, it remains unclear how LDLR works in HCC development by affecting cholesterol metabolism. Database analyses and immunohistochemical staining were used to identify the clinical significance of LDLR in HCC. A transcriptome analysis was used to reveal the mechanism of LDLR aberration in HCC progression. A liver orthotopic transplantation model was used to evaluate the role of LDLR in HCC progression in vivo. Downregulation of LDLR was identified as a negative prognostic factor in human HCC. Reduced expression of LDLR in HCC cell lines impaired LDL uptake but promoted proliferation and metastasis in vitro and in vivo. Mechanistically, increasing intracellular de novo cholesterol biosynthesis was the chief contributor to malignant behaviors caused by LDLR inhibition, which could be rescued by simvastatin. Activation of the MEK/ERK pathway by LDLR downregulation partially contributed to intracellular cholesterol synthesis in HCC. Downregulation of LDLR may elevate intracellular cholesterol synthesis to accelerate proliferation and motility through a mechanism partially attributed to stimulation of the MEK/ERK signaling pathway. Repression of intracellular cholesterol synthesis with statins may constitute a targetable liability in the context of lower LDLR expression in HCC.
Tyrosine kinase inhibitors (TKIs), as an important tumor therapy, can induce severe proteinuria that significantly affects anti-tumor therapy. Existing therapies against proteinuria induced by other etiologies are currently ineffective for TKI-induced proteinuria. It has been shown that various types of proteinuria are related to podocyte damage caused by changes in the RelA signaling pathway. Our experiments confirmed that TKIs activate the renal RelA signaling pathway, and induce death of podocytes and destruction of the glomerular filtration barrier. Here we found that Liuwei Dihuang Pill (LDP) attenuated the inflammatory injury of podocytes through inhibiting activation of RelA, and subsequently relieved TKI-related proteinuria and prevented the progression of TMA and FSGS. Our finding indicated that LDP may be effective for the treatment of TKI-induced proteinuria, which is clinically significant.
Tripterygium Wilfordii ,a traditional Chinese herb,was reported to have immunoregulatory effects.It has been used in clinic for treatment of rheumatoid arthritis,systemic lupus erythematosus and kidney disease.But it is toxic,with an incidence of ADRs significantly higher than other drugs.The organal systems affected by ADRs of Tripterygium Wilfordii were gastrointestinal,urogenital,cardiovascular,blood circulatory systems as well as bone marrow.Therefore,development of new preparations to reduce its toxicity is in need to satisfy clinical uses. [
Abstract Streptococcus pyogenes of the M1 serotype can cause STSS, which is associated with significant morbidity and mortality. The purpose of the present study was to examine the role of NFAT signaling in M1 protein-induced lung injury. NFAT-luc mice were treated with the NFAT inhibitor A-285222 before administration of the M1 protein. Neutrophil infiltration, edema, and CXC chemokines were quantified in the lung, 4 h after challenge with the M1 protein. Flow cytometry was used to determine Mac-1 expression. Challenge with the M1 protein increased NFAT-dependent transcriptional activity in the lung, spleen, and liver in NFAT-luc mice. Administration of the NFAT inhibitor A-285222 abolished M1 protein-evoked NFAT activation in the lung, spleen, and liver. M1 protein challenge induced neutrophil recruitment, edema, and CXC chemokine production in the lung, as well as up-regulation of Mac-1 on circulating neutrophils. Inhibition of NFAT activity attenuated M1 protein-induced neutrophil infiltration by 77% and edema formation by 50% in the lung. Moreover, administration of A-285222 reduced M1 protein-evoked pulmonary formation of CXC chemokine >80%. In addition, NFAT inhibition decreased M1 protein-triggered Mac-1 up-regulation on neutrophils. These findings indicate that NFAT signaling controls pulmonary infiltration of neutrophils in response to streptococcal M1 protein via formation of CXC chemokines and neutrophil expression of Mac-1. Thus, the targeting of NFAT activity might be a useful way to ameliorate lung injury in streptococcal infections.
According to the observation of 238 DM patients from Feb.1996 to Feb 1999,the writers made an overall analysis towards the diabetics affected by the bad state of min.The writers made a research on this phenomena and took some correct measures to improve the patients' health conditions by applying the nursing psychology.From this the relationship between the nurses and patients has been strengthened.Also,the patients have begun to create the confidence of treating their disease with the help of nurses.Meanwhile,the patients' self-protected consciousness has been improving and they have received good treatment results.This has also improved the living quality of DM patients.
Combined hepatocellular-cholangiocarcinoma (cHCC-CCA), as a rare primary hepatic tumor, is challenging to accurately assess in terms of the clinical outcomes and prognostic risk factors in patients. This study aimed to clarify the function of tertiary lymphoid structure (TLS) status in predicting the outcome of cHCC-CCA and to preliminarily explore the possible mechanism of TLS formation.
Purpose: To establish optimum conditions for anti-tumour therapy, we evaluated the efficacy of doxorubicin using liposomal doxorubicin and local hyperthermia to improve the anti-tumour efficacy over liposomal doxorubicin alone in rabbit VX2 tumours. Materials and methods: A VX2 tumour model was established in New Zealand white rabbits, which were randomly divided into five groups: 1) control, 2) free doxorubicin hydrochloride (Dox), 3) liposomal doxorubicin hydrochloride (L-Dox), 4) L-Dox plus 41 °C thermotherapy (L-Dox + 41 °C TT); and 5) L-Dox plus 43 °C thermotherapy (L-Dox + 43 °C TT). To achieve complete tumour remission, multiple high-dose administrations (5 mg/kg, once per week for a total of 3 weeks) were given. An ultrasound hyperthermia instrument was used to induce local hyperthermia and the systemic toxicity of Dox was evaluated by changes in weight, blood count and serum lactic dehydrogenase. The anti-tumour effect of Dox was evaluated by observing the gross tumour volume, weight and rabbit survival. Results: The white blood cell count following administration of Dox or L-Dox was lower than for control animals and those treated with L-Dox + 41 °C TT. There was no difference between the groups with regard to the red blood cell count. Compared with the control and Dox groups, tumour proliferation was significantly inhibited following administration of L-Dox, L-Dox + 41 °C TT and L-Dox + 43 °C TT, as evidenced by the difference in tumour volume, weight and survival time. Differences in tumour proliferation were also found between the L-Dox and thermotherapy groups. Conclusion: Local hyperthermia combined with L-Dox can significantly improve anti-tumour efficacy and reduce systemic toxicity.
AIM To observe Changes of circular and local renin-angiotensin system (RAS) of rats with restriction of sodium intake after congestive heart failure. METHODS Congestive heart failure (CHF) rats were divided into three groups with sham operation rats group as control. Radioimmunassay and in situ hybrdization techniques were used to determine the plasma and myocardium angiotension Ⅱ (AngⅡ) and aldosterone (Ald) contents and the expression of angiotensionogen mRNA ,respectively. RESULTS In sodium restricted group, the plasma AngⅡ and Ald contents [(225±20) ng·L -1, (476±62) μg·L -1] and myocardium AngⅡ contents [atrial (20.1±4.5) ng·g -1, ventricle (27.3±5.9) ng·g -1] were significantly higher than those in CHF group [(180±29) ng·L -1, (248±58) μg·L -1 and (17.5±3.6) ng·g -1,(20.1±3.7)ng·g -1](P0.05, P0.01), and the ventricle angiotensionogen mRNA expression (12.6±2.3) were also obviously higher than those in CHF group (8.6±1.7)(P0.05), and while the plasma sodium was 5% lower than that in CHF group (P0.05); In sodium supplemented group, the myocardium angiotensionogen mRNA expression had no obvious change compared with the CHF group, the other items had no differentiation as compared with the control. CONCLUSION Restriction of sodium intake after CHF can activate the circular and local RAS further and then worsen the sodium and water retention.
Importance Olamkicept, a soluble gp130-Fc-fusion-protein, selectively inhibits interleukin 6 (IL-6) trans-signaling by binding the soluble IL-6 receptor/IL-6 complex. It has anti-inflammatory activities in inflammatory murine models without immune suppression. Objective To assess the effect of olamkicept as induction therapy in patients with active ulcerative colitis. Design, Setting, and Participants Randomized, double-blind, placebo-controlled phase 2 trial of olamkicept in 91 adults with active ulcerative colitis (full Mayo score ≥5, rectal bleeding score ≥1, endoscopy score ≥2) and an inadequate response to conventional therapy. The study was conducted at 22 clinical study sites in East Asia. Patients were recruited beginning in February 2018. Final follow-up occurred in December 2020. Interventions Eligible patients were randomized 1:1:1 to receive a biweekly intravenous infusion of olamkicept 600 mg (n = 30) or 300 mg (n = 31) or placebo (n = 30) for 12 weeks. Main Outcomes and Measures The primary end point was clinical response at week 12 (defined as ≥3 and ≥30% decrease from baseline total Mayo score; range, 0-12 [worst] with ≥1 decrease and ≤1 in rectal bleeding [range, 0-3 {worst}]). There were 25 secondary efficacy outcomes, including clinical remission and mucosal healing at week 12. Results Ninety-one patients (mean age, 41 years; 25 women [27.5%]) were randomized; 79 (86.8%) completed the trial. At week 12, more patients receiving olamkicept 600 mg (17/29 [58.6%]) or 300 mg (13/30 [43.3%]) achieved clinical response than placebo (10/29 [34.5%]), with adjusted difference vs placebo of 26.6% (90% CI, 6.2% to 47.1%; P = .03) for 600 mg and 8.3% (90% CI, −12.6% to 29.1%; P = .52) for 300 mg. Among patients randomized to receive 600 mg olamkicept, 16 of 25 secondary outcomes were statistically significant compared with placebo. Among patients randomized to receive 300 mg, 6 of 25 secondary outcomes were statistically significant compared with placebo. Treatment-related adverse events occurred in 53.3% (16/30) of patients receiving 600 mg olamkicept, 58.1% (18/31) receiving 300 mg olamkicept, and 50% (15/30) receiving placebo. The most common drug-related adverse events were bilirubin presence in the urine, hyperuricemia, and increased aspartate aminotransferase levels, and all were more common in the olamkicept groups compared with placebo. Conclusions and Relevance Among patients with active ulcerative colitis, biweekly infusion of olamkicept 600 mg, but not 300 mg, resulted in a greater likelihood of clinical response at 12 weeks compared with placebo. Further research is needed for replication and to assess longer-term efficacy and safety. Trial Registration ClinicalTrials.gov Identifier: NCT03235752