Hepatotoxicity induced by bioactive constituents in traditional Chinese medicines or herbs, such as bavachin (BV) in Fructus Psoraleae, has a prolonged latency to overt drug-induced liver injury in the clinic. Several studies have described BV-induced liver damage and underlying toxicity mechanisms, but little attention has been paid to the deciphering of organisms or cellular responses to BV at no-observed-adverse-effect level, and the underlying molecular mechanisms and specific indicators are also lacking during the asymptomatic phase, making it much harder for early recognition of hepatotoxicity. Here, we treated mice with BV for 7 days and did not detect any abnormalities in biochemical tests, but found subtle steatosis in BV-treated hepatocytes. We then profiled the gene expression of hepatocytes and non-parenchymal cells at single-cell resolution and discovered three types of hepatocyte subsets in the BV-treated liver. Among these, the hepa3 subtype suffered from a vast alteration in lipid metabolism, which was characterized by enhanced expression of apolipoproteins, carboxylesterases, and stearoyl-CoA desaturase 1 (Scd1). In particular, increased Scd1 promoted monounsaturated fatty acids (MUFAs) synthesis and was considered to be related to BV-induced steatosis and polyunsaturated fatty acids (PUFAs) generation, which participates in the initiation of ferroptosis. Additionally, we demonstrated that multiple intrinsic transcription factors, including Srebf1 and Hnf4a, and extrinsic signals from niche cells may regulate the above-mentioned molecular events in BV-treated hepatocytes. Collectively, our study deciphered the features of hepatocytes in response to BV insult, decoded the underlying molecular mechanisms, and suggested that Scd1 could be a hub molecule for the prediction of hepatotoxicity at an early stage.
Stem cells in organoids self-organize into tissue patterns with unknown mechanisms. Here, we use skin organoids to analyze this process. Cell behavior videos show that the morphological transformation from multiple spheroidal units with morphogenesis competence (CMU) to planar skin is characterized by two abrupt cell motility–increasing events before calming down. The self-organizing processes are controlled by a morphogenetic module composed of molecular sensors, modulators, and executers. Increasing dermal stiffness provides the initial driving force (driver) which activates Yap1 (sensor) in epidermal cysts. Notch signaling (modulator 1) in epidermal cyst tunes the threshold of Yap1 activation. Activated Yap1 induces Wnts and MMPs (epidermal executers) in basal cells to facilitate cellular flows, allowing epidermal cells to protrude out from the CMU. Dermal cell–expressed Rock (dermal executer) generates a stiff force bridge between two CMU and accelerates tissue mixing via activating Laminin and β1-integrin. Thus, this self-organizing coalescence process is controlled by a mechano-chemical circuit. Beyond skin, self-organization in organoids may use similar mechano-chemical circuit structures.
Human immediate early response 2 (IER2) has been implicated in tumor cell motility and metastasis; however, the underlying mechanisms in hepatocellular carcinoma (HCC) metastasis remain to be clarified.In this study, we demonstrate that dysregulation of IER2 was shown in HCC clinical samples, and IER2 expression resulted in the promotion of cell migration and invasion in vitro, and HCC tumor growth and pulmonary metastasis in vivo.Moreover, we showed that IER2 expression altered assembly of the actin cytoskeleton rearrangement.Furthermore, MAPK and PI3K/Akt signaling pathways induced by IER2 were confirmed to be probably involved in regulating the activity of Rho GTPases, such as RhoA, Rac1 and Cdc42.Collectively, our results indicated a significant role of IER2 in the HCC cell motility and metastasis through MAPK and PI3K/Akt signaling pathways to regulate the activity of Rho GTPases, thereby modulating actin cytoskeleton rearrangement, unveiling a novel mechanism of cell motility regulation induced by IER2.
Gα13 (GNA13) is the α subunit of a heterotrimeric G protein that mediates signaling through specific G protein-coupled receptors (GPCRs). Our recent study showed that control of GNA13 expression by specific microRNAs (miRNAs or miRs) is important for prostate cancer cell invasion. However, little is known about the control of GNA13 expression in breast cancers. This project was carried out to determine (i) whether enhanced GNA13 expression is important for breast cancer cell invasion, and (ii) if so, the mechanism of deregulation of GNA13 expression in breast cancers.To determine the probable miRNAs regulating GNA13, online miRNA target prediction tool Targetscan and Luciferase assays with GNA13-3'-UTR were used. Effect of miRNAs on GNA13 mRNA, protein and invasion was studied using RT-PCR, western blotting and in vitro Boyden chamber assay respectively. Cell proliferation was done using MTT assays.Overexpression of GNA13 in MCF-10a cells induced invasion, whereas knockdown of GNA13 expression in MDA-MB-231 cells inhibited invasion. Expression analysis of miRNAs predicted to bind the 3'-UTR of GNA13 revealed that miR-31 exhibited an inverse correlation to GNA13 protein expression in breast cancer cells. Ectopic expression of miR-31 in MDA-MB-231 cells significantly reduced GNA13 mRNA and protein levels, as well as GNA13-3'-UTR-reporter activity. Conversely, blocking miR-31 activity in MCF-10a cells induced GNA13 mRNA, protein and 3'-UTR reporter activity. Further, expression of miR-31 significantly inhibited MDA-MB-231 cell invasion, and this effect was partly rescued by ectopic expression of GNA13 in these cells. Examination of 48 human breast cancer tissues revealed that GNA13 mRNA levels were inversely correlated to miR-31 levels.These data provide strong evidence that GNA13 expression in breast cancer cells is regulated by post-transcriptional mechanisms involving miR-31. Additionally our data shows that miR-31 regulates breast cancer cell invasion partially via targeting GNA13 expression in breast cancer cells. Loss of miR-31 expression and increased GNA13 expression could be used as biomarkers of breast cancer progression.
This paper proposes an information-theoretic representation learning framework, named conditional information flow maximization, to extract noise-invariant sufficient representations for the input data and target task. It promotes the learned representations have good feature uniformity and sufficient predictive ability, which can enhance the generalization of pre-trained language models (PLMs) for the target task. Firstly, an information flow maximization principle is proposed to learn more sufficient representations by simultaneously maximizing both input-representation and representation-label mutual information. In contrast to information bottleneck, we handle the input-representation information in an opposite way to avoid the over-compression issue of latent representations. Besides, to mitigate the negative effect of potential redundant features, a conditional information minimization principle is designed to eliminate negative redundant features while preserve noise-invariant features from the input. Experiments on 13 language understanding benchmarks demonstrate that our method effectively improves the performance of PLMs for classification and regression. Extensive experiments show that the learned representations are more sufficient, robust and transferable.
Occlusal trauma is an important factor promoting bone loss caused by periodontal diseases. Although there are reports of traumatic force promoting bone resorption in periodontal diseases, no studies examining the inhibition of bone formation by traumatic force and the underlying mechanism have been reported. The aim of this study was to investigate the mechanism whereby traumatic force inhibits bone formation.MC3T3-E1 cells were induced to undergo osteogenic differentiation and subjected to cyclic uniaxial compressive stress with or without stimulation with Pg. LPS. The expression of osteoblast markers and the activation of IKK-NF-κB signaling were evaluated in vitro. Then, MC3T3-E1 cells were induced to undergo osteogenic differentiation and subjected to cyclic uniaxial compressive stress with or without IKK-2 Inhibitor VI. The expression of osteoblast markers was determined. Then, the classic Wnt signaling pathway (β-catenin, Gsk3β, p-Gsk3β, and Dkk1) was further evaluated in vitro. Finally, occlusal trauma was induced in Wistar rats with or without the injection of IKK-2 Inhibitor VI, to evaluate changes in bone mass and IKK-NF-κB and Wnt/β-catenin signaling in vivo.After stimulation with Pg. LPS and traumatic force, IKK-NF-κB signaling was significantly activated in vitro. The expression of osteoblast markers and the activity of alkaline phosphatase in MC3T3-E1 cells declined after traumatic force loading and were rescued when IKK-NF-κB signaling was blocked. Wnt/β-catenin signaling was accordingly inhibited upon force loading, but this inhibition was reversed when IKK-NF-κB was antagonized in vitro. X-ray and Micro-CT analysis of the mandibles of the rats as well as HE and TRAP staining showed that bone loss induced by occlusal trauma declined after IKK-NF-κB was inhibited. The expression of p65 and IκBα was increased when occlusal trauma was induced in Wistar rats, whereas β-catenin, OCN, and Runx2 levels were decreased. After blocking IKK-NF-κB, significant upregulation of β-catenin, OCN, and Runx2 was observed in rats suffering from occlusal trauma.IKK-NF-κB signaling could be activated by traumatic force or occlusal trauma. Its activation promoted the degradation of β-catenin, ultimately inhibiting osteogenic differentiation in vitro and bone formation in vivo.
Peripheral blood mononuclear cells (PBMCs) were collected from a clinically diagnosed 59-year old male Parkinson's disease (PD) patient with R1628P variant in the LRRK2 gene. The PMBCs were reprogrammed with the human OSKM transcription factors using the Sendai-virus reprogramming system. The transgene-free iPSC showed pluripotency confirmed by immunofluorescent staining for pluripotency markers and differentiated into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This cellular model will provide a good resource for further pathophysiological studies of PD.