Background: Cisplatin is an effective anti-cancer drug with limited clinical applications due to ototoxicity. Resveratrol, known for its antioxidant and anti-inflammatory properties, has been reported to mitigate these adverse effects, although the underlying mechanism remains under-researched. Objective: This study aimed to investigate the effects and underlying mechanisms of resveratrol on cisplatin-induced ototoxicity. Methods: Ototoxicity was modeled in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells by cisplatin exposure, followed by interventions using thioredoxin-interacting protein (TXNIP) siRNA transfection, MitoQ, or resveratrol. Apoptosis and proliferation were quantitatively assessed using terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) and Ki67 immunostaining. Quantitative real-time PCR (qRT-PCR) and western blotting were used to measure the changes in mRNA and protein levels. Flow cytometry and enzyme- linked immunosorbent assay (ELISA) were used to analyze pyroptotic cells and inflammatory responses. Reactive oxygen species (ROS) production was tracked using 2', 7'- dichlorofluorescein diacetate (DCFH-DA) staining and flow cytometry. Mitochondrial Membrane Potential (MMP) and mitochondrial permeability transition pore (MPTP) opening levels were analyzed through tetramethylrhodamine ethyl ester (TMRE) staining and specific reagent kits, respectively. Lastly, immunofluorescence staining and co-immunoprecipitation were employed to investigate the co-localization and interactions between TXNIP and thioredoxin (TRX)/NOD-like receptor family pyrin domain-containing 3 (NLRP3) proteins. Results: Cisplatin exacerbated apoptosis, suppressed cell proliferation, and upregulated NLRP3, pro-Caspase-1, cleaved Caspase-1, Gasdermin D (GSDMD), GSDMD-N, and TXNIP expression. Concurrently, cisplatin resulted in increased pyroptotic cells and increased interleukin-6 (IL-6), IL-18, IL-1β, and tumor necrosis factor-α (TNF-α) levels. These effects were mitigated by TXNIP knockdown. Furthermore, cisplatin led to elevated cellular ROS and mitochondrial ROS (mtROS), decreased MMP, and inhibited MPTP opening. Cisplatin reduced the colocalization and interaction between TRX and TXNIP while enhancing those between TXNIP and NLRP3. These changes were attenuated by MitoQ. Resveratrol displayed effects similar to those of TXNIP knockdown and MitoQ treatment. result: Cisplatin exacerbated cell apoptosis, suppressed cell proliferation, and up-regulated NLRP3, pro-Caspase 1, cleaved-Caspase 1, GSDMD, GSDMD-N, and TXNIP expressions. Concurrently, cisplatin resulted in increased pyroptotic cells and heightened IL-1β, IL-18, IL-6, and TNF-α levels. These effects were mitigated through TXNIP knockdown. Furthermore, cisplatin led to elevated ROS, decreased MMP and inhibited the opening of MPTP. Cisplatin reduced the co-localization and interaction between TRX and TXNIP while enhancing those between TXNIP and NLRP3. MitoQ reversed these changes. Resveratrol displayed similar effects to those of TXNIP knockdown and MitoQ treatment. Conclusion: Resveratrol alleviated the toxic effects of cisplatin on cochlear hair cells by inhibiting cell pyroptosis process mediated by the mtROS/TXNIP/NLRP3 pathway.
Abstract There is emerging evidence that glycaemic variability (GV) plays an important role in the development of diabetic complications. The current study aimed to compare the effects of lifestyle intervention (LI) with and without partial meal replacement (MR) on GV. A total of 123 patients with newly diagnosed and untreated type 2 diabetes (T2D) were randomised to receive either LI together with breakfast replacement with a liquid formula (LI+MR) ( n 62) or LI alone ( n 61) for 4 weeks and completed the study. Each participant was instructed to have three main meals per d and underwent 72-h continuous glucose monitoring (CGM) both before and after intervention. Measures of GV assessed by CGM included the incremental AUC of postprandial blood glucose (AUCpp), standard deviation of blood glucose (SDBG), glucose CV and mean amplitude of glycaemic excursions (MAGE). After a 4-week intervention, the improvements in systolic blood pressure ( P =0·046) and time in range ( P =0·033) were more pronounced in the LI+MR group than in the LI group. Furthermore, LI+MR caused significantly greater improvements in all GV metrics including SDBG ( P =0·005), CV ( P =0·002), MAGE ( P =0·016) and AUCpp ( P <0·001) than did LI. LI+MR ( v. LI) was independently associated with improvements in GV after adjustment of covariates (all P <0·05). Our study showed that LI+MR led to significantly greater improvements in GV compared with LI, suggesting that LI+MR could be an effective treatment to alleviate glucose excursions.
In order to achieve sustained and controlled release of the hydrophobic cargoes, improve the bioavailability, and reduce the side effects of antibiotics, the model drug erythromycin (EM) was used to prepare polycaprolactone-polyethylene glycol (PCL-PEG)/EM micelles. PCL-PEG, a biocompatible and biodegradable amphiphilic polymer, was used as carrier material of micelles to optimize the formulation and preparation process by orthogonal design. The morphology, stability, drug loading, and encapsulation efficiency and the in vitro release behavior of the micelles were investigated. In addition, activity assays of anti-Staphylococcus aureus were performed. The results indicated that PCL-PEG/EM were rod-like micelles with an average particle size of nm and a zeta potential of +19 mV. The average drug loading and encapsulation efficiency were approximately 6.5% and 97.0%, respectively. The micelles were stable in the serum within three days. At the effective concentration of the drug, the formulation indicated no apparent toxicity to the cells. The micelles were able to rapidly enter Staphylococcus aureus (S. aureus) and to provide sustained release cargoes that effectively inhibited S. aureus proliferation. The present study provided a new platform for the rational and effective use of hydrophobic antibiotics to treat infections.
TiO2 thin film photocatalysis has suffered from poor photocatalytic efficiency due to its low surface area-to-volume ratio. The efficiency can be enhanced by narrowing the bandgap, defect engineering or introducing surface plasmonic effect. However, the fabrication process is normally complicated and time consuming. This work offers a simple method to fabricate disordered defect-rich black TiO2 ultrathin film by atomic layer deposition (ALD). Surface defects of TiO2 have been suggested to play a significant role in the process of photocatalysis. With ALD, the bandgap and surface defects of the material can be controlled effectively through the deposition parameters. Surface plasmonic effects could also be introduced by the deposition of Ag nanoclusters via simple thermal evaporation. Absorption at ~450 nm was significantly enhanced. The overall photocatalytic behavior of composite material is greatly boosted and we observed an excellent efficiency towards the degradation of organic pollutants such as bisphenol A. The mechanism of surface plasmonic enhanced black TiO2 photocatalysis was studied by in-situ infrared atomic force microscope (IR-AFM) under the illumination of different wavelength. The reaction sites of the composite materials were determined accurately and the working mechanism was discussed.
Glioma is the most common primary cancer of the central nervous system with dismal prognosis. Long noncoding RNAs (lncRNAs) have been discovered to play key roles in tumorigenesis in various cancers, including glioma. Because of the relevance between immune infiltrating and clinical outcome of glioma, identifying immune-related lncRNAs is urgent for better personalized management.Single-sample gene set enrichment analysis (ssGSEA) was applied to estimate immune infiltration, and glioma samples were divided into high immune cell infiltration group and low immune cell infiltration group. After screening differentially expressed lncRNAs in two immune groups, least absolute shrinkage and selection operator (LASSO) Cox regression analysis was performed to construct an immune-related prognostic signature. Additionally, we explored the correlation between immune infiltration and the prognostic signature.A total of 653 samples were appropriate for further analyses, and 10 lncRNAs were identified as immune-related lncRNAs in glioma. After univariate Cox regression and LASSO Cox regression analysis, six lncRNAs were identified to construct a prognostic signature for glioma, which could be taken as independent prognostic factors in both univariate and multivariate Cox regression analyses. Moreover, risk score was significantly correlated with all the 29 immune-related checkpoint expression (p < 0.05) in ssGSEA except neutrophils (p = 0.43).The study constructed an immune-related prognostic signature for glioma, which contributed to improve clinical outcome prediction and guide immunotherapy.
Background: The inflammatory response in the tumor immune microenvironment has implications for the progression and prognosis in glioma. However, few inflammatory response-related biomarkers for lower-grade glioma (LGG) prognosis and immune infiltration have been identified. We aimed to construct and identify the prognostic value of an inflammatory response-related signature, immune infiltration, and drug targets for LGG. Methods: The transcriptomic and clinical data of LGG samples and 200 inflammatory response genes were obtained from public databases. The LGG samples were separated into two inflammatory response-related subtypes based on differentially expressed inflammatory response genes between LGG and normal brain tissue. Next, inflammatory response-related genes (IRRGs) were determined through a difference analysis between the aforementioned two subtypes. An inflammatory response-related prognostic model was constructed using IRRGs by using univariate Cox regression and Lasso regression analyses and validated in an external database (CGGA database). ssGSEA and ESTIMATE algorithms were conducted to evaluate immune infiltration. Additionally, we performed integrated analyses to investigate the correlation between the prognostic signature and N 6-methyladenosine mRNA status, stemness index, and drug sensitivity. We finally selected MSR1 from the prognostic signature for further experimental validation. Results: A total of nine IRRGs were identified to construct the prognostic signature for LGG. LGG patients in the high-risk group presented significantly reduced overall survival than those in the low-risk group. An ROC analysis confirmed the predictive power of the prognostic model. Multivariate analyses identified the risk score as an independent predictor for the overall survival. ssGSEA revealed that the immune status was definitely disparate between two risk subgroups, and immune checkpoints such as PD-1, PD-L1, and CTLA4 were significantly expressed higher in the high-risk group. The risk score was strongly correlated with tumor stemness and m6A. The expression levels of the genes in the signature were significantly associated with the sensitivity of tumor cells to anti-tumor drugs. Finally, the knockdown of MSR1 suppressed LGG cell migration, invasion, epithelial–mesenchymal transition, and proliferation. Conclusion: The study constructed a novel signature composed of nine IRRGs to predict the prognosis, potential drug targets, and impact immune infiltration status in LGG, which hold promise for screening prognostic biomarkers and guiding immunotherapy for LGG.