A novel alpha-galactosidase gene (aga2) was cloned from Bifidobacterium breve 203. It contained an ORF of 2226-bp nucleotides encoding 741 amino acids with a calculated molecular mass of 81.5 kDa. The recombinant enzyme Aga2 was heterogeneously expressed, purified and characterized. Regarding substrate specificity for hydrolysis, Aga2 was highly active towards p-nitrophenyl-alpha-d-galactopyranoside (pNPG). The Km value for pNPG was estimated to be 0.27 mM and for melibiose it was estimated to be 4.3 mM. Aga2 was capable of catalyzing transglycosylation as well as hydrolysis. The enzyme synthesized a trisaccharide (Gal-alpha-1, 4-Gal-alpha-1, 6-Glc) using melibiose as a substrate. It was a new oligosaccharide produced by glycosidase and contained Gal-alpha-1,4 linkage, a novel galactosidic link formed by microbial alpha-galactosidase. In the presence of pNPG as a donor, Aga2 was able to catalyze glycosyl transfer to various acceptors including monosaccharides, disaccharides and sugar alcohols.
Phenolic compounds are an important class of chemicals with various beneficial bioactivities. However, they are usually poorly soluble in water and unstable while some of them are toxic. Glycosylation can significantly improve the solubility, stability, and bioactivity of phenolic compounds. The enzymatic method for glycosylation can form a specific glycosidic bond in one step and under environment-friendly conditions. This review covers the progress made in the application of two classes of enzymes, namely, glycosyltransferases and glycosidases, for the glycosylation of phenolic compounds, and illustrates the impact of glycosylation on the properties of these compounds.
This work established an integrated utilization of dairy whey in β-galactosidase production from Lactobacillus bulgaricus and prebiotics synthesis by the probiotic enzyme. A cost-effective whey-based medium was newly developed for culturing Lactobacillus bulgaricus to produce β-galactosidase. The medium was optimized through response surface methodology (RSM) involving a series of statistical designs, such as the Plackett–Burman design, steepest ascent experiment, and central composite design. Under the optimized medium, the β-galactosidase activity of L. bulgaricus reached 2034 U/L, which was twice that produced from the traditional MRS medium. The cells of L. bulgaricus harvested from the whey-based medium were subsequently treated with lysozyme. The resulting crude enzyme was used as an efficient catalyst, which catalyzed the synthesis of the prebiotic galacto-oligosaccharides (GOS) in a high yield of 44.7% by using whey (200 g/L) as the substrate. The sugar mixture was further purified by activated charcoal adsorption, thereby yielding a high-purity level of 77.6% GOS.
Abstract Attention deficits may present dysfunctions in any one or two components of attention (alerting, orienting, and executive control (EC)). However, these various forms of attention deficits generally have abnormal microstructure integrity of inferior fronto-occipital fasciculus (IFOF). In this work, we aim to deeply explore: (1) associations between microstructure integrities of IFOF (including frontal, parietal, temporal, occipital, and insular segments) and attention by means of structural equation models and multiple regression analyses; (2) genetic/environmental effects on IFOF, attention, and their correlations using bivariate genetic analysis. EC function was attributed to the fractional anisotropy (FA) of left (correlation was driven by genetic and environmental factors) and right IFOF (correlation was driven by environmental factors), especially to left frontal part and right occipital part (correlation was driven by genetic factors). Alerting was associated with FA in parietal and insular parts of left IFOF. No significant correlation was found between orienting and IFOF. This study revealed the advantages of lobar-segmental analysis in structure-function correlation study and provided the anatomical basis for kinds of attention deficits. The common genetic/environmental factors implicated in the certain correlations suggested the common physiological mechanisms for two traits, which should promote the discovery of single-nucleotide polymorphisms affecting IFOF and attention.