Background: The transgenic mice models overexpressing human p25 contribute greatly to the in vivo neurotoxic mechanism of p25 in neurodegenerative diseases. However, it is time-consuming to manipulate existing transgenic mice models. Objective: Here we aim to establish a novel mouse model of neurod egeneration by overexpressing p25 mediated by recombinant adeno-associated virus serotype 9 (rAAV9). Methods: AAV9-GFP-p25 encoding GFP-fused p25 driven by synapsin promoter, and the control, AAV9-GFP, were delivered in mice by tail-vein injection. Assessments of p25 expression, neurodegenerative pathology, and behavioral changes were performed. Results: GFP expression was detected by in vivo imaging as early as one week after virus injection. Notably, widespread expression of p25 was obviously found in cortex, hippocampus, and cerebellum in AAV9-GFP-p25 mice. Moreover, decreased hippocampus volumes in AAV9-GFP-p25 mice were detected by 7T MRI examination about one month after injection. Further, these AAV9-GFP-p25 mice exhibited progressive memory impairment from three-month to six-month after virus injection. At last, hyperphosphorylated tau, neurofibrillary tangles, activated astrocytes and microglia cells were elevated in these p25 mice at about six months after virus delivery. However, amyloid-β plaques, overt neuronal loss, and apoptosis in the hippocampus and cortex were not significantly induced by AAV9-mediated p25 overexpression. Conclusion: The AAV9-mediated p25 overexpression mouse model, which is a practical model exhibiting neurodegeneration-like pathological and behavioral changes, provides an easier and time-saving method to explore the functions of p25 in vivo, as well as an alternative tool for development of drugs against neurotoxic of p25.
Abstract Co-treatment of neuroprotective reagents may improve the therapeutic efficacy of hypothermia in protecting neurons during ischemic stroke. This study aimed to find promising drugs that enhance the neuroprotective effect of mild hypothermia (MH). 26 candidate drugs were selected based on different targets. Primary cultured cortical neurons were exposed to oxygen-glucose deprivation and reoxygenation (OGD/R) to induce neuronal damage, followed by either single treatment (a drug or MH) or a combination of a drug and MH. Results showed that, compared with single treatment, combination of MH with brain derived neurotrophic factor, glibenclamide, dizocilpine, human urinary kallidinogenase or neuroglobin displayed higher proportion of neuronal cell viability. The latter three drugs also caused less apoptosis rate in combined treatment. Furthermore, co-treatment of those three drugs and MH decreased the level of reactive oxygen species (ROS) and intracellular calcium accumulation, as well as stabilized mitochondrial membrane potential (MMP), indicating the combined neuroprotective effects are probably via inhibiting mitochondrial apoptosis pathway. Taken together, the study suggests that combined treatment with hypothermia and certain neuroprotective reagents provide a better protection against OGD/R-induced neuronal injury.
Background and Purpose An increasing number of autoimmune encephalitis (AE)-associated autoantibodies have been successfully characterized. However, many cases of AE remain unexplained on account of unknown antibodies. The aim of the present study was to identify a novel antibody against collapsin response mediator protein 2 (CRMP2) in suspected AE patients. Methods A patient’s serum and cerebrospinal fluid samples tested negative for known AE antibodies; however, strong immunolabel signals were observed in the neuronal cytoplasm of the cortex, hippocampus, and Purkinje cells on rat brain sections. Immunoprecipitation from the rat brain protein lysate, followed by mass spectrometry analysis, was used to identify the targeting antigen. Western blotting and cell-based assay with antigen-overexpressing HEK293T cells were used for antibody specificity, epitope, IgG subtype determination, and retrospective study. Results An antibody against CRMP2, a synaptic protein involved in axon guidance, was identified. The immunostains of the patient’s samples on rat brain sections were eliminated by pre-absorption with HEK293T cells overexpressing CRMP2. The samples specifically immunoreacted with CRMP2, but not with CRMP1, CRMP3, CRMP4, and CRMP5. The C-terminus of CRMP2 with 536 amino acids contained the epitope for antibody binding. The subtype analysis showed that the anti-CRMP2 antibody was IgG4. Furthermore, a screening of 46 patients with neurological disoders and neuro-cytoplasm immunostainings on rat brain sections resulted in the identification of anti-CRMP2 antibodies in a case of encephalomyelitis. The two patients responded well to immunotherapies. Conclusions This study discovered that a novel anti-CRMP2 antibody was associated with suspected AE and thus should be included in the testing list for AE.
The thymus is a lobulated unique lymphoid immune organ that plays a critical role in the selection, development, proliferation, and differentiation of T cells. The thymus of developing chickens undergoes continued morphological alterations; however, the biomolecular and transcriptional dynamics of the postnatal thymus in avian species is not clear yet. Therefore, the thymuses from chickens at different stages of development (at weeks 0, 1, 5, 9, 18, and 27) were used in the present study. The RNA-seq method was used to study the gene expression patterns. On average, 24120819 clean reads were mapped, differentially expressed genes (DEGs) were identified on the basis of log values (fold change), including 744 upregulated and 425 downregulated genes. The expression pattern revealed by RNA-seq was validated by quantitative real-time PCR (qPCR) analysis of four important genes, which are PCNA, CCNA2, CCNB2, and CDK1. Thus, the current study revealed that during postnatal development, the thymus undergoes severe atrophy. Thymus structure was damaged and gene expression changed dramatically, especially at the 27 th week of age. Moreover, we found significant changes of several signaling pathways such as the cytokine-cytokine receptor interaction and cell cycle signaling pathways. Hence, it may be inferred that those signaling pathways might be closely related to the postnatal chicken thymus development.
Intracarotid cold saline infusion (ICSI) protects against ischemic stroke not only due to the resulting hypothermia, but also as a result of the cerebral artery flushing. To assess the relative benefit of hypothermia and cerebral artery flushing in neuroprotection, hypothermic and normothermic saline infusions were administrated over a serial time points after the initiation of reperfusion in a rat ischemia model.Ischemic strokes were induced in Sprague-Dawley rats (n = 115) by occluding the middle cerebral artery for 2 hours using an intraluminal filament. In the hypothermic groups, the brain temperature was lowered to 33-34°C for 20 minutes by ICSI at three time points (0, 1, and 2 hours) after reperfusion. Correspondingly, in the normothermic groups, the brain temperature was maintained at normal levels during intracarotid normothermic saline infusion (INSI) for 20 minutes at the same time points. After 48-hour reperfusion, infarct sizes and brain water contents were determined using 2,3,5-triphenyltetrazolium chloride (TTC) staining and the dry-wet weight method, respectively. Levels of neuron-specific enolase (NSE), S100beta, and matrix metalloproteinase 9 (MMP9) in the serum were measured by enzyme-linked immunoassay (ELISA). Neurological deficits were also evaluated.Immediate infusion after the onset of reperfusion (0 hour) did not result in significant difference for reductions of infarct sizes, neurological deficits or S100beta serum levels between ICSI and INSI groups, compared with the non-infusion group. However, brain water content and NSE serum level were significantly lower in the ICSI group than the non-infusion group. When the infusions were started 1 hour after reperfusion, both ICSI and INSI infusions still reduced the infarct sizes, but only ICSI significantly decreased the brain water content, neurological deficits and S100beta serum level. All therapeutic effects of INSI disappeared when infusions were started 2 hours after reperfusion, whereas infarct size, neurological deficits and S100beta serum level were still reduced significantly in ICSI group, compared with the non-infusion group.The neuroprotection of hypothermia and cerebral artery flushing induced by selective carotid infusion after ischemia weakens as the length of time between the reperfusion and infusion increases. The therapeutic time window of brain hypothermia induced by cold saline infusion is broader than cerebral artery flushing induced by normothermic saline infusion.