Motor planning facilitates rapid and precise execution of volitional movements. Although motor planning has been classically studied in humans and monkeys, the mouse has become an increasingly popular model system to study neural mechanisms of motor planning. It remains yet untested whether mice and primates share common behavioral features of motor planning. We combined videography and a delayed response task paradigm in an autonomous behavioral system to measure motor planning in non-body-restrained mice. Motor planning resulted in both reaction time (RT) savings and increased movement accuracy, replicating classic effects in primates. We found that motor planning was reflected in task-relevant body features. Both the specific actions prepared and the degree of motor readiness could be read out online during motor planning. The online readout further revealed behavioral evidence of simultaneous preparation for multiple actions under uncertain conditions. These results validate the mouse as a model to study motor planning, demonstrate body feature movements as a powerful real-time readout of motor readiness, and offer behavioral evidence that motor planning can be a parallel process that permits rapid selection of multiple prepared actions.
Abstract GABAergic interneurons can be subdivided into three subclasses: parvalbumin positive (PV), somatostatin positive (SOM) and serotonin positive neurons. With principal cells (PCs) they form complex networks. We examine PCs and PV responses in mouse anterior lateral motor cortex (ALM) and barrel cortex (S1) upon PV photostimulation in vivo . In layer 5, the PV response is paradoxical: photoexcitation reduces their activity. This is not the case in ALM layer 2/3. We combine analytical calculations and numerical simulations to investigate how these results constrain the architecture. Two-population models cannot account for the results. Networks with three inhibitory populations and V1-like architecture account for the data in ALM layer 2/3. Our data in layer 5 can be accounted for if SOM neurons receive inputs only from PCs and PV neurons. In both four-population models, the paradoxical effect implies not too strong recurrent excitation. It is not evidence for stabilization by inhibition.
The mouse is an increasingly prominent model for the analysis of mammalian neuronal circuits. Neural circuits ultimately have to be probed during behaviors that engage the circuits. Linking circuit dynamics to behavior requires precise control of sensory stimuli and measurement of body movements. Head-fixation has been used for behavioral research, particularly in non-human primates, to facilitate precise stimulus control, behavioral monitoring and neural recording. However, choice-based, perceptual decision tasks by head-fixed mice have only recently been introduced. Training mice relies on motivating mice using water restriction. Here we describe procedures for head-fixation, water restriction and behavioral training for head-fixed mice, with a focus on active, whisker-based tactile behaviors. In these experiments mice had restricted access to water (typically 1 ml/day). After ten days of water restriction, body weight stabilized at approximately 80% of initial weight. At that point mice were trained to discriminate sensory stimuli using operant conditioning. Head-fixed mice reported stimuli by licking in go/no-go tasks and also using a forced choice paradigm using a dual lickport. In some cases mice learned to discriminate sensory stimuli in a few trials within the first behavioral session. Delay epochs lasting a second or more were used to separate sensation (e.g. tactile exploration) and action (i.e. licking). Mice performed a variety of perceptual decision tasks with high performance for hundreds of trials per behavioral session. Up to four months of continuous water restriction showed no adverse health effects. Behavioral performance correlated with the degree of water restriction, supporting the importance of controlling access to water. These behavioral paradigms can be combined with cellular resolution imaging, random access photostimulation, and whole cell recordings.
Summary Behavior requires neural activity across the brain, but most experiments probe neurons in a single area at a time. Here we used multiple Neuropixels probes to record neural activity simultaneously in brain-wide circuits, in mice performing a memory-guided directional licking task. We targeted brain areas that form multi-regional loops with anterior lateral motor cortex (ALM), a key circuit node mediating the behavior. Neurons encoding sensory stimuli, choice, and actions were distributed across the brain. However, in addition to ALM, coding of choice was concentrated in subcortical areas receiving input from ALM, in an ALM-dependent manner. Choice signals were first detected in ALM and the midbrain, followed by the thalamus, and other brain areas. At the time of movement initiation, choice-selective activity collapsed across the brain, followed by new activity patterns driving specific actions. Our experiments provide the foundation for neural circuit models of decision-making and movement initiation.
Animals are not simple input-output machines. Their responses to even very similar stimuli are variable. A key, long-standing question in neuroscience is to understand the neural correlates of such behavioral variability. To reveal these correlates, behavior and neural population activity must be related to one another on single trials. Such analysis is challenging due to the dynamical nature of brain function (e.g., in decision making), heterogeneity across neurons and limited sampling of the relevant neural population. By analyzing population recordings from mouse frontal cortex in perceptual decision-making tasks, we show that an analysis approach tailored to the coarse grain features of the dynamics is able to reveal previously unrecognized structure in the organization of population activity. This structure is similar on error and correct trials, suggesting dynamics that may be constrained by the underlying circuitry, is able to predict multiple aspects of behavioral variability and reveals long time-scale modulation of population activity.