One of the key activities to construct a successful Service-Oriented Architecture (SOA) is the identification of services with the right level of abstraction. Most of existing SOA design methodologies advocate identifying services from the top-down decomposition of business processes. However, the identification quality in these methodologies heavily depends on the expertise and experience of individual designers. The ability to quantitatively evaluate service identification is absolutely needed. In this paper, we propose an approach that supports such evaluation by applying the measurement technology to the service-based business process decomposition. A model to capture related architectural elements with their relationships is presented. A set of design metrics are proposed for measuring various features of identified services in the service portfolio, including service granularity, coupling, cohesion, and business entity convergence. To apply the approach, a prototypical measurement tool for service identification is developed. An automotive work order scenario is used as an illustration example to explain our approach and demonstrate its effectiveness.
Introduction Macrophytes are essential for maintaining the health of shallow lake ecosystems, however, the driving and responsive relationship between ecological factors (such as seasonal changes and nutrition, etc.) and plant communities is not yet clear. Methods In this study, we conducted seasonal surveys of macrophyte community composition in lakes with different nutrient states, aiming to understand the incidence relation between macrophyte community diversity, seasonal changes and environmental factors. Results According to the classification criteria of comprehensive nutritional index, there were significant differences in the trophic status of the three lakes. Among them, the Xihu Lake has reached mild eutrophication with a TLI value of 56.33, both Cibi Lake and Haixihai Lake are mesotrophic with TLI value of 36.03 and 33.48, respectively. The results of diversity analysis showed a significant negative correlation between α-diversity (include Species richness, Shannon-Wiener index, Simpson index and Pielou index) and lake nutrient status. Among them, Xihu Lake showed the lowest α-diversity in all seasons, Haixihai Lake exhibited the middle α-diversity, Cibi Lake indicated the highest α-diversity. Non-metric multidimensional ordination showed that there were obvious spatial structures differences among the macrophyte communities in the three lakes. Macrophyte community composition in the three lakes was more similar in summer and autumn, but there was a wider gap in spring and winter. The redundancy analysis indicated distinct differences between diversity index and ecological factors, the eigenvalues of Axis 1 and Axis 2 being, respectively, 36.13% and 8.15%. Environmental factors could explain 44.8% of the total variation in macrophyte communities structure. Among these, nitrogen, phosphorus, water transparency and water temperature contributed 50.2%, 3.5%, 3.8% and 27.5%, respectively. Conclusions In summary, the community structure of macrophytes in plateau shallow lakes is co-regulated by seasons and nutrients.
Soil fungi in forest ecosystems have great potential to enhance host plant growth and systemic ecological functions and services. Reforestation at Saihanba Mechanized Forest Farm, the world's largest artificial plantation, has been integral to global forest ecosystem preservation since the 1950s. To better assess the ecological effects of soil microbiology after afforestation, fungal diversity and community structure (using Illumina sequencing) from forests dominated by Larix gmelinii var. Principis-rupprechtii, Pinus sylvestris var. Mongolica and Picea asperata, and from grassland were surveyed. In total, 4540 operational taxonomic units (OTUs) were identified, with Mortierella and Solicoccozyma being the dominant genera of grassland soil and Inocybe, Cortinarius, Piloderma, Tomentella, Sebacina, Hygrophorus and Saitozyma dominating the plantation soil. Principle coordinate analysis (PCoA) and co-occurrence networks revealed differences in fungal structure after afforestation. Significantly, more symbiotroph guilds were dominated by ectomycorrhizal fungi in plantations under the prediction of FUNGuild. The community composition and diversity of soil fungi were significantly influenced by pH via redundancy analysis (RDA) and the Mantel test (p < 0.01). This finding emphasizes that soil pH has a strong effect on the transition of fungal communities and functional taxa from grassland to plantation, providing a novel indicator for forest restoration.
ABSTRACT Cultivating high-yield wheat under limited water resources is essential for sustainable agriculture in semiarid regions. Amid water scarcity, plants activate drought response signaling, yet the delicate balance between drought tolerance and development remains unclear. Through genome-wide-association study (GWAS) and transcriptome profiling, we identified a wheat atypical basic helix-loop-helix (bHLH) transcription factor (TF), TabHLH27-A1, as a promising quantitative trait locus (QTL) candidate for both relative root dry weight (DW.R%) and spikelet number per spike (SPS) in wheat. TabHLH27-A1/B1/D1 knockout reduced wheat drought tolerance, yield, and water use efficiency (WUE). TabHLH27-A1 exhibited rapid induction with PEG treatment, gradually declining over days. It activated stress response genes such as TaCBL8-B1 and TaCPI2-A1 while inhibiting root growth genes like TaSH15-B1 and TaWRKY70-B1 under short-term PEG stimulus. The distinct transcriptional regulation of TabHLH27-A1 involved diverse interacting factors such as TaABI3-D1 and TabZIP62-D1. Natural variations of TabHLH27-A1 influences its transcriptional responses to drought stress, with TabHLH27-A1 Hap-II associated with stronger drought tolerance, larger root system, more spikelets, and higher WUE in wheat. Significantly, the elite TabHLH27-A1 Hap-II was selected during the breeding process in China, and introgression of TabHLH27-A1 Hap-II allele improves drought tolerance and grain yield, especially under water-limited conditions. Our study highlights TabHLH27-A1’s role in balancing root growth and drought tolerance, providing a genetic manipulation locus for enhancing WUE in wheat.
Macrophytes with different growth forms exhibit diverse functional traits and ecological functions. In natural sub-deep lakes, there are often significant differences in water quality between nearshore areas with macrophytes and open water areas. However, it remains unclear whether this phenomenon can be attributed to differences in plant growth forms. Therefore, in this study, we conducted continuous monitoring for four years, both before and after the implementation of an ecological restoration project, to explore whether the change in plant growth forms caused differences in water quality between the nearshore and open water areas. The results showed that the implementation of ecological restoration projects proved highly effective in mitigating the negative impacts on the local environment. Firstly, the ecological restoration project greatly altered the plant community structure in the nearshore area before and after restoration. After restoration, there was a significant increase in the biomass and distribution area of noncanopy-forming plants (including erect and rosette-forming plants), while the opposite effect was observed for canopy-forming plants. Secondly, the transition of macrophyte community growth forms enhanced the stability of both macrophyte communities and water physicochemical parameters. Furthermore, the reduction in canopy-forming plants facilitated a more efficient water body exchange, resulting in a greater homogeneity in water quality between the nearshore and open water areas. Overall, the presence of canopy-forming plants can hinder water body exchange due to large canopy formations on the water surface. In light of these findings, it is recommended that ecological restoration projects in natural lakes should consider the functional group composition of macrophytes.
Growth of herbaceous plants responds sensitively and rapidly to climate variability. Yet, little is known regarding how climate warming influences the growth of herbaceous plants, particularly in semi-arid sites. This contrasts with widely reported tree growth decline and even mortality in response to severe water deficits due to climate warming around the world. Here, we use the relatively novel approach of herb-chronology to analyze the correlation between climatic factors and annual ring width in the root xylem of two perennial forb species (Medicago sativa, Potentilla chinensis) in the Loess Plateau of China. We show that warming-induced water deficit has a significant negative effect on the growth of herbaceous plants in the Loess Plateau. Our results indicate that the growth of forbs responds rapidly and sensitively to drought variability, implying that water availability plays a dominant role in regulating the growth of herbaceous plants in semi-arid areas. If warming and drying in the Loess Plateau continue in the future, further affects the growth of herbaceous plants, potentially driving regional changes in the relationship between herbaceous vegetation and climate.