An experimental air convection embankment (ACE) was constructed in Beiluhe on the Qinghai-Tibet Plateau during 2001–2003, using coarse (5–8 and 40–50 cm), poorly graded crushed rock fill material on the slope of embankment with thick ground ice permafrost foundation, which should be called the air convection embankment with crushed rock slope protection (ACE–CRSP). The highly permeable ACE–CRSP installation was designed to test the cooling effectiveness of ACE–CRSP concept in an actual railway project. Ground temperature data were collected from test sections on the railway with thermistor sensor strings. The results showed that the mean ground temperature under the layer of the crushed rock with coarse particle diameter of 40–50 cm was lower than that under one with finer particle diameter of 5–8 cm, and the fluctuating range of temperature under the former was bigger than that under the latter. It was obvious that the maximum thaw depth was raised under the layer of crushed rock with coarse particle diameter of 40–50 cm, which resulted from the stronger cooling effectiveness of air convection during the winter. The amount of heat exchange also showed that the absorbed cooling energy of the foundation, under the layer of the crushed rock with coarse diameter, was larger than that with finer diameter.So, we believe that the cooling effectiveness of the crushed rock layer with coarse diameter was stronger than that one with finer diameter.
This paper analyzes the macroscopic and mesoscopic damage evolution of frozen compacted loess under loading and unloading by combining real-time computed tomography (CT) observation technology with mesostructure change and mechanical behavior. The failure mechanism of the internal structure of the soil undergoing loading and unloading pressure is revealed. With increasing loading and unloading, the internal cementation of the sample gradually weakens, while the dissipation energy and elastic strain energy increase and then decrease. During the strain softening stage, the sample undergoes mainly strain at the plastic limit, the dissipation energy tends to be stable, and the elastic strain energy decreases. Mesoscopic CT image analysis reveals irreversible structural damage after multi-stage loading and unloading, with mesoscopic damage variables increasing as the load increases. In the elastic stage, the analysis of macroscopic and mesoscopic damage variables is crucial for studying the damage evolution of frozen loess. In the viscoplastic stage, different macroscopic and mesoscopic damage variables effectively characterize geometric deformation, strength, and stiffness of the material, providing valuable insights to guide the further study of the mechanical properties of frozen compacted loess.
Abstract. Across the Qinghai–Tibet Plateau (QTP) there is a narrow engineering corridor with widely distributed slopes called the Qinghai–Tibet Engineering Corridor (QTEC), where a variety of important infrastructures are concentrated. These facilities are transportation routes for people, materials, energy, etc. from inland China to the Tibet Autonomous Region. From Golmud to Lhasa, the engineering corridor covers 632 km of permafrost containing the densely developed Qinghai–Tibet Railway and Qinghai–Tibet Highway, as well as power and communication towers. Slope failure in permafrost regions, caused by permafrost degradation, ground ice melting, etc., affects the engineering construction and permafrost environments in the QTEC. We implement a variety of sensors to monitor the hydrological and thermal deformation between permafrost slopes and permafrost engineering projects in the corridor. In addition to soil temperature and moisture sensors, the global navigation satellite system (GNSS), terrestrial laser scanning (TLS), and unmanned aerial vehicles (UAVs) were adopted to monitor the spatial distribution and changes in thermal deformation. An integrated dataset of hydrological and thermal deformation in permafrost engineering and slopes in the QTEC from the 1950s to 2020, including meteorological and ground observations, TLS point cloud data, and RGB and thermal infrared (TIR) images, can be of great value for estimating the hydrological and thermal impact and stability between engineering and slopes under the influence of climate change and engineering disturbance. The dataset and code were uploaded to the Zenodo repository and can be accessed through https://zenodo.org/communities/qtec (last access: 23 June 2021), including meteorological and ground observations at https://doi.org/10.5281/zenodo.5009871 (Luo et al., 2020d), TLS measurements at https://doi.org/10.5281/zenodo.5009558 (Luo et al., 2020a), UAV RGB and TIR images at https://doi.org/10.5281/zenodo.5016192 (Luo et al., 2020b), and R code for permafrost indices and visualisation at https://doi.org/10.5281/zenodo.5002981 (Luo et al., 2020c).