To investigate the value of liver to abdominal area ratio (LAAR) in predicting prognosis of alcohol-induced acute-on-chronic liver failure (ACLF).The clinical data of patients with alcohol-induced ACLF admitted to the First Affiliated Hospital of Fujian Medical University from May 2008 to March 2015 were retrospectively analyzed. The primary outcome was death. The prognosis of the patients in 3 months after admission was followed up. The LAAR upon admission was calculated for each patient. The correlation between calculated liver volume and LAAR was explored. Cox proportional hazards model was used to explore the factors affecting the prognosis of the ACLF patients. Receiver operating characteristic (ROC) curve was drawn to determine the predictive value of LAAR in prognosis of the patients.Forty-five patients were included in this study, with 43 males and 2 females, and a median age of 48 years.Nineteen patients died with 3 months and 26 patients survived. Liver volume was positively correlated with LAAR (r=0.764, P<0.01). According to Cox analysis, LAAR (OR=1.067, 95% CI: 1.025-1.111, P=0.002) and model for end-stage liver disease (MELD) score (OR=1.103, 95% CI: 1.016-1.197, P=0.019) were independent prognostic factors for 3-months survival of alcohol-induced ACLF patients. The optimal cut-off value of LAAR for predicting survival was 44 (the area under the ROC curve was 0.747, 95% CI: 0.602-0.892, P=0.005).LAAR could serve as a new prognostic factor in alcohol-induced ACLF patients.
The objective of this study was to investigate the effects of exercise training on muscle metabolism, fatty acid composition, carcass traits, and meat quality characteristics of Mongolian sheep. Fourteen Mongolian sheep were randomly divided into two groups (7 sheep in each) and placed in two adjacent livestock pens. One group of sheep was kept in the pen (Control [C] group) and the other group of sheep (Training [T] group) were driven away in a field to walk twice a day. The results showed a reduction in pH measured 45 min post mortem, L*, a*, and b* value, intramuscular fat, and carcass length, and an increase in the ultimate pH value and shear force in the meat of T group in comparison with that of C group (p < .050). Also, exercise training moderately affected the fatty acid composition of LT muscle. Compared with C group, the concentrations of myristoleic acid (C14:1) and stearic acid (C18:0) were increased (p < .050), while the concentrations of C20:3 n-6, neurolic acid (C24:1), and n-3 polyunsaturated fatty acid (PUFA) were decreased in T group (p < .050). Transcriptome analysis highlighted 621 genes differentially expressed in two groups, including 385 were up-regulated (e.g., GLUT4 and PGC-1α) and 236 were down-regulated (e.g., PLIN1 and ACSL3) in T with respect to C group. Besides, considering these genes, a number of enrichment pathways related to muscle metabolic processes, involving carbohydrate metabolism, lipid metabolism, oxidation reduction process, and muscle tissue development, were highlighted. In conclusion, these results contributed to a better understanding of the possible biological and molecular processes underlying the effects of exercise training on muscle metabolism and meat quality in Mongolian sheep, and provide useful information for contributing to understand the phenotypic and functional differences in meat quality of sheep.
Sheep bones are a rich resource in China, but their deep processing is limited by outdated technology. Sausages are popular among various consumer groups due to their unique flavor. The purpose of this study was to optimize the preparation process of fermented-enzymatic sheep bone powder and develop calcium-fortified functional sausages with an excellent flavor, aroma, and taste. In this experiment, the fermented-enzymatic sheep bone powder was prepared by optimizing the two-bacterial fermentation process of Lactobacillus Plantarum BNCC336421 and Pediococcus Pentosaceus BNCC193259. The nutritional indexes and micro-structure were analyzed. Additionally, different ratios of fermented sheep bone powder were added into the sausages to investigate their effects on the nutritional indexes, physicochemical properties, and organoleptic quality of the sausages. The results showed that the optimal process conditions for the fermented sheep bone sludge were as follows: a strain inoculation of 3%; a compounding ratio of 1:1; a bone sludge concentration of 1:20; and fermentation time of 24 h. Under these conditions, the Ca2+ content and protein hydrolysis degree of the sheep bone were 2441.31 mg/100 mL and 23.78%, respectively. The fermented sheep bone powder analyzed using SEM, and the particle size analysis showed it was loose and porous with a small particle size. The addition of fermented sheep bone powder to the sausage increased its amino acid and calcium ion contents, improved the texture indexes such as cohesion, and enhanced both the L* value and sensory scores. The best result was observed in the 1% group (p < 0.05). It serves as a data source for developing fermented sheep bone powder and its application in sausage, offering a fresh idea and approach to achieving the high-value utilization of sheep bone.
Sunit sheep are famous for their high meat quality, but the meat quality of them has declined due to the change in feeding methods. Lactobacillus has a variety of probiotic effects and is widely used in animal diets to optimize meat quality. This study aimed to investigate the effect of dietary supplementation with different levels of Lactobacillus on meat quality. A total of 24 3-month-old Sunit sheep with an average body weight of 19.03 ± 3.67 kg were randomly divided into control (C), 1% (L1), 2% (L2), and 3% Lactobacillus groups (L3), with 6 sheep in each group. Myofiber characteristics, meat quality, and metabolic enzyme activity were detected. Moreover, the regulatory mechanism of Lactobacillus on meat quality was explored by using Western blotting and real-time Quantitative polymerase chain reaction (RT-qPCR). The results showed that dietary addition of Lactobacillus decreased LDH activity in the Biceps femoris of Sunit sheep (P < 0.05). Compared to the other groups, the 1% Lactobacillus group showed the conversion of myofibers from the glycolytic to the oxidative type, and the increasing b* values (P < 0.05), decreasing shear force and cooking loss of meat (P < 0.05) and the relative gene and protein expression levels of AMPK, PGC-1α, NRF1, TFAM, and COX IV (P < 0.05) in the Biceps femoris were also increased in the 1% Lactobacillus group. Therefore, the addition of Lactobacillus to the diet of Sunit sheep could regulate the AMPK signaling pathway to promote myofiber type conversion, which improves meat quality. This study provided a theoretical and data basis for improving the meat quality of sheep and supplied a novel way of applying Lactobacillus.