By means of atomic layer deposition (ALD) technology, different thicknesses of Al 2 O 3 dielectric layers can be deposited on surface of the carbon nanotube fiber (CNTF) to give it different colors and high temperature resistance sensing properties.
Abstract As an interface between the blood flow and vessel wall, endothelial cells (ECs) are exposed to hemodynamic forces, and the biochemical molecules released from ECs–blood flow interaction are important determinants of vascular homeostasis. Versatile microfluidic chips have been designed to simulate the biological and physiological parameters of the human vascular system, but in situ and real‐time monitoring of the mechanical force–triggered signals during vascular mechanotransduction still remains a significant challenge. Here, such challenge is fulfilled for the first time, by preparation of a flexible and stretchable electrochemical sensor and its incorporation into a microfluidic vascular chip. This allows simulating of in vivo physiological and biomechanical parameters of blood vessels, and simultaneously monitoring the mechanically induced biochemical signals in real time. Specifically, the cyclic circumferential stretch that is actually exerted on endothelium but is hard to reproduce in vitro is successfully recapitulated, and nitric oxide signals under normal blood pressure, as well as reactive oxygen species signals under hypertensive states, are well documented. Here, the first integration of a flexible electrochemical sensor into a microfluidic chip is reported, therefore paving a way to evaluate in vitro organs by built‐in flexible sensors.
Abstract Electrochemical sensing based on conventional rigid electrodes has great restrictions for characterizing biomolecules in deformed cells or soft tissues. The recent emergence of stretchable sensors allows electrodes to conformally contact to curved surfaces and perfectly comply with the deformation of living cells and tissues. This provides a powerful strategy to monitor biomolecules from mechanically deformed cells, tissues, and organisms in real time, and opens up new opportunities to explore the mechanotransduction process. In this minireview, we first summarize the fabrication of stretchable electrodes with emphasis on the nanomaterial‐enabled strategies. We then describe representative applications of stretchable sensors in the real‐time monitoring of mechanically sensitive cells and tissues. Finally, we present the future possibilities and challenges of stretchable electrochemical sensing in cell, tissue, and in vivo detection.
Vascular smooth muscle cells (SMCs) are circumferentially oriented perpendicular to the blood vessel and maintain the contractile phenotype in physiological conditions. They can sense the mechanical forces of blood vessels expanding and contracting and convert them into biochemical signals to regulate vascular homeostasis. However, the real-time monitoring of mechanically evoked biochemical response while maintaining SMC oriented growth remains an important challenge. Herein, we developed a stretchable electrochemical sensor by electrospinning aligned and elastic polyurethane (PU) nanofibers on the surface of PDMS film and further modification of conductive polymer PEDOT:PSS-LiTFSI-CoPc (PPLC) on the nanofibers (denoted as PPLC/PU/PDMS). The aligned nanofibers on the electrode surface could guide the oriented growth of SMCs and maintain the contractile phenotype, and the modification of PPLC endowed the electrode with good electrochemical sensing performance and stability under mechanical deformation. By culturing cells on the electrode surface, the oriented growth of SMCs and real-time monitoring of stretch-induced H2O2 release were achieved. On this basis, the changes of H2O2 level released by SMCs under the pathology (hypertension) and intervention of natural product resveratrol were quantitatively monitored, which will be helpful to further understand the occurrence and development of vascular-related diseases and the mechanisms of pharmaceutical intervention.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Comprehensive Summary In vivo monitoring of bioelectrical and biochemical signals with implanted electrodes has received great interest over the past decades. However, this faces huge challenges because of the severe mechanical mismatch between conventional rigid electrodes and soft biological tissues. In recent years, the emergence of flexible and stretchable electrodes offers seamless and conformable biological‐electronic interfaces and has demonstrated significant advantages for in vivo electrochemical and electrophysiological monitoring. This review first summarizes the strategies for electrode fabrication from the point of substrate and conductive materials. Next, recent progress in electrode functionalization for improved performance is presented. Then, the advances of flexible and stretchable electrodes in exploring bioelectrical and biochemical signals are introduced. Finally, we present some challenges and perspectives ranging from electrode fabrication to application. Key Scientists In 2001, a seminal work by Kipke et al. first showed flexible polyimide‐based intracortical electrode arrays. [1] This electrode was further expanded to 252‐channel using microelectromechanical systems technology by Stieglitz et al. in 2009 and achieved large‐scale cortical recordings. [2] Later, Lieber et al. created mesh electronics that allow for seamless and minimally invasive three‐dimensional interpenetration with nerve tissues, opening up unique applications for flexible electronics. [3] Subsequently, Rogers et al. described bioresorbable electronics for transient electrical activity recordings in 2016. [4] And Frank et al. proposed polymer electrode arrays capable of resolving single neurons in 2019. [5] It wasn't until 2020 that a significant breakthrough in biochemical signals monitoring by Peng et al. demonstrated functionalized carbon nanotube fibre bundles for multiple disease biomarkers monitoring. [6] Later on, Mooney et al. established the first fully viscoelastic electrode arrays for neural recordings from the brain and heart in 2021. [7] Recently, Bao et al. presented tissue‐mimicking, stretchable neurotransmitter interfaces for monitoring the brain and gut. [8]
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DAergic) neurons and low level of dopamine (DA) in the midbrain. Recent studies suggested that some natural products can protect neurons against injury, but their role on neurotransmitter release and the underlying mechanisms remained unknown. In this work, nanoelectrode electrochemistry was used for the first time to quantify DA release inside single DAergic synapses. Our results unambiguously demonstrated that harpagide, a natural product, effectively enhances synaptic DA release and restores DA release at normal levels from injured neurons in PD model. These important protective and curative effects are shown to result from the fact that harpagide efficiently inhibits the phosphorylation and aggregation of α-synuclein by alleviating the intracellular reactive oxygen level, being beneficial for vesicle loading and recycling. This establishes that harpagide offers promising avenues for preventive or therapeutic interventions against PD and other neurodegenerative disorders.