Human cancer-associated UniGene sets (NCBI GeneBank) provide a platform for identifying differentially-expressed genes in human cancers. The present study identified and characterized a set of human cancer-associated genes using the Digital Differential Display (DDD) and functional analysis tools. A total of 1,904 genes were differentially expressed in 15 cancer types, including genes that had been previously shown to be specific in certain human cancers. A total of 274 genes were uniquely expressed in certain cancer types, including 37 genes that were highly expressed in the human testes and epididymis. These genes mainly functioned as ribosomal proteins, enzymes, receptors, secretory proteins and cell adhesion molecules. The most common domains that were encoded by the cancer-associated genes were those of cytochrome P450 CYP2D6, serpin and apolipoprotein A-I. A further gene ontology (GO) enrichment analysis revealed seven major functional clusters, which corresponded to the enriched pathways involved in cancer. The present study provides a source of cancer-associated genes and their functions. The results provide new insights into cancer biology and the involvement of highly-expressed epididymal genes in cancer biomarkers.
To investigate the alteration of cerebral blood flow (CBF) and its connectivity patterns in olfactory-related regions of type 2 diabetes mellitus (T2DM) patients using arterial spin labeling (ASL). Sixty-nine patients with T2DM and 63 healthy controls (HCs) underwent ASL scanning using 3.0T magnetic resonance imaging. We compared the CBF values of the olfactory-related brain regions between the two groups and analyzed the correlation between their changes and clinical variables. We also used these regions as seeds to explore the differences in CBF connectivity patterns in olfactory-related brain regions between the T2DM patients and HCs. Compared with the HC group, the CBF of the right orbital part of the inferior frontal gyrus (OIFG), right insula, and bilateral olfactory cortex was decreased in the T2DM patients. Moreover, the duration of the patients was negatively correlated with the CBF changes in the right OIFG, right insula, and right olfactory cortex. The CBF changes in the right OIFG were positively correlated with the Self-Rating Depression Scale scores, those in the right insula were negatively correlated with the max blood glucose of continuous glucose, and those in the right olfactory cortex were negatively correlated with the mean blood glucose of continuous glucose. In addition, the T2DM patients also showed decreased CBF connectivity between the right OIFG and the left temporal pole of the middle temporal gyrus and increased CBF connectivity between the right medial orbital part of the superior frontal gyrus and the right orbital part of the superior frontal gyrus and between the right olfactory cortex and the bilateral caudate and the left putamen. Patients with T2DM have decreased CBF and altered CBF connectivity in multiple olfactory-related brain regions. These changes may help explain why olfactory dysfunction occurs in patients with T2DM, thus providing insights into the neuropathological mechanism of olfactory dysfunction and cognitive decline in T2DM patients.
Human follicular fluid (HFF), which is composed by essential proteins required for the follicle development, provides an important microenvironment for oocyte maturation. Recently, overweight status has been considered as a detrimental impact factor on oocyte maturation, but whether HFF proteome could provide protein markers for assessing overweight-based oocyte maturation deficiency is still unknown.To reveal the HFF-based molecular characteristics associated with abnormal oocyte maturation, an iTRAQ-based comparative proteomic analysis was performed to investigate different HFF protein expression profiles from normal weight women and overweight status women.Two hundred HFF proteins were quantified in our data, of which 43% have not been overlapped by two previous publications. Compared with the HFF proteins of normal weight women, 22 up-regulated HFF proteins and 21 down-regulated HFF proteins were found in the overweight status women. PANTHER database showed these altered HFF proteins participated in development, metabolism, immunity, and coagulation, and STRING database demonstrated their complicated interaction networks. The confidence of proteomic outcome was verified by Western blot analysis of WAP four-disulfide core domain protein 2 (WFDC2), lactotransferrin (LTF), prostate-specific antigen (KLK3), fibronectin (FN1), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Further, ELISA assay indicated WFDC2 might be a potentially useful candidate HFF marker for the diagnosis of oocyte maturation arrest caused by overweight status.Our work provided a new complementary high-confidence HFF dataset involved in oocyte maturation, and these altered HFF proteins might have clinical relevance and diagnostic and prognostic value for abnormal oocyte maturation in overweight status women.