Reactive oxygen species (ROS) homeostasis is maintained at a higher level in cancer cells, which promotes tumorigenesis. Oxidative stress induced by anticancer drugs may further increase ROS to promote apoptosis, but can also enhance the metastasis of cancer cells. The effects of ROS homeostasis on cancer cells remain to be fully elucidated. In the present study, the effect of a reduction in manganese superoxide dismutase (MnSOD) on the migration and invasion of A431 cells was investigated. Our previous micro‑assay data revealed that the mRNA expression of MnSOD was higher in the invasive A431‑III cell line compared with that in the parental A431 cell line (A431‑P). In the present study, high protein levels of MnSOD and H2O2 production were observed in A431‑III cells; however, catalase protein levels were significantly lower in A431‑III cells compared with those in the A431‑P cell line. The knockdown of MnSOD increased H2O2 levels, enzyme activity, the mRNA levels of matrix metalloproteinase‑1, ‑2 and ‑9, and the migratory and invasive abilities of the cells. Inducing a reduction in H2O2 using diphenyleneiodonium (DPI) and N‑acetyl‑l‑cysteine decreased the migratory abilities of the cell lines, and DPI attenuated the migratory ability that had been increased by MnSOD small interfering RNA knockdown. Luteolin (Lu) and quercetin (Qu) increased the expression of catalase and reduced H2O2 levels, but without an observed change in the protein levels of MnSOD. Taken together, these data suggest that reduced MnSOD may induce ROS imbalance in cells and promote the metastatic ability of cancer cells. Lu and Qu may attenuate these processes and may be promising potential anticancer agents.
In vitro transcribed messenger RNA (mRNA) vaccines have displayed enormous potential in fighting against the coronavirus disease 2019 (COVID-19) pandemic. Efficient and safe delivery systems must be included in the mRNA vaccines due to the fragile properties of mRNA. A self-assembled peptide-poloxamine nanoparticle (PP-sNp) gene delivery system is specifically designed for the pulmonary delivery of nucleic acids and displays promising capabilities in mediating successful mRNA transfection. Here, an improved method for preparing PP-sNp is described to elaborate on how the PP-sNp encapsulates Metridia luciferase (MetLuc) mRNA and successfully transfects cultured cells. MetLuc-mRNA is obtained by an in vitro transcription process from a linear DNA template. A PP-sNp is produced by mixing synthetic peptide/poloxamine with mRNA solution using a microfluidic mixer, allowing for the self-assembly of PP-sNp. The charge of PP-sNp is subsequently evaluated by measuring the zeta potential. Meanwhile, the polydispersity and hydrodynamic size of PP-sNp nanoparticles are measured using dynamic light scattering. The mRNA/PP-sNp nanoparticles are transfected into cultured cells, and supernatants from the cell culture are assayed for luciferase activity. The representative results demonstrate their capacity for in vitro transfection. This protocol may shed light on developing next-generation mRNA vaccine delivery systems.
Interferon-γ (IFN-γ) and perforin (pfp) are important effector mechanisms used by CD8 T cells to clear virus-infected cells. In this study, we used IFN-γ/pfp double knockout mice to address if these two effector molecules play redundant roles in the control of acute infection with murine gammaherpesvirus-68 (MHV-68) in BALB/C mice. Perforin knockout (KO) mice and wild-type mice cleared infectious virus from the lungs, even following high-dose infection. However, the IFN-γ KO and IFN-γ/pfp double knockout (DKO) groups had higher virus titers in the lungs at day 10 post-infection, and both groups had higher mortality rates. In IFN-γ/pfp DKO mice, the virus titer and mortality rate were significant higher than in IFN-γ KO mice, indicating a role for perforin in protection from disease. WT mice given IFN-γ blocking antibody also showed significantly higher viral titers. In contrast, IFN-γ KO mice on a C57BL/6 background controlled respiratory infection comparably to wild-type mice. These data show that perforin plays a redundant role in the control of virus replication, but IFN-γ plays an essential role in BALB/C mice infected with MHV-68. We conclude that there is a marked strain-dependent difference in the effector mechanisms needed to control acute MHV-68 infection between C57BL/6 and BALB/C mice. In addition we show that immune therapy that re-establishes viral control after spontaneous reactivation in CD4-deficient mice depends upon perforin in C57BL/6 mice but IFN-γ in BALB/C mice.
Abstract Vitamin A deficiency leads to increased susceptibility to a spectrum of infectious diseases. The studies presented dissect the intrinsic role of each of the retinoic acid receptor (RAR) isoforms in the clonal expansion, differentiation, and survival of pathogen-specific CD8 T cells in vivo. The data show that RARα is required for the expression of gut-homing receptors on CD8+ T cells and survival of CD8+ T cells in vitro. Furthermore, RARα is essential for survival of CD8+ T cells in vivo following Listeria monocytogenes infection. In contrast, RARβ deletion leads to modest deficiency in Ag-specific CD8+ T cell expansion during infection. The defective survival of RARα-deficient CD8+ T cells leads to a deficiency in control of L. monocytogenes expansion in the spleen. To our knowledge, these are the first comparative studies of the role of RAR isoforms in CD8+ T cell immunity.
Abstract BHLHE40, a member of the basic helix‐loop‐helix transcription factor family, has been reported to play an important role in inflammatory diseases. However, the regulation and function of BHLHE40 in Helicobacter pylori ( H pylori )‐associated gastritis is unknown. We observed that gastric BHLHE40 was significantly elevated in patients and mice with H pylori infection. Then, we demonstrate that H pylori‐ infected GECs express BHLHE40 via cagA ‐ERK pathway. BHLHE40 translocates to cell nucleus, and then binds to cagA protein ‐ activated p‐STAT3 (Tyr705). The complex increases chemotactic factor CXCL12 expression (production). Release of CXCL12 from GECs fosters CD4 + T cell infiltration in the gastric mucosa. Our results identify the cagA ‐BHLHE40‐CXCL12 axis that contributes to inflammatory response in gastric mucosa during H pylori infection.
Abstract Background China faced the most significant challenge from stroke because it imposes a heavy burden on families, national health services, social services, and the economy. The length of hospital stay (LOS) was an essential indicator of utilization of medical services and was usually used to assess the efficiency of hospital management and patient quality of care. This study established a prediction model based on the machine learning algorithm to predict the ischemic stroke patients' LOS. Methods A total of 18,195 ischemic stroke patients' electronic medical records and 28 attributes were extracted from electronic medical records in a large comprehensive hospital in China. After preprocessing the data and feature selection, the XGBoost algorithm was used for building a machine learning model. The 10-fold cross-validation was used for model validation. The accuracy (ACC), recall rate (RE) and F1 measure were used to evaluate the performance of the prediction model of LOS of ischemic stroke patients. Finally, the XGBoost algorithm was used to identify and remove irrelevant features by ranking all attributes based on feature importance. Results The average ACC, RE and F1 measure were 0.96, 0.82 and 0.79, respectively, under the 10-fold cross-validation. According to the analysis of the importance of features, the LOS of ischemic stroke patients was affected by demographic characteristics, past medical history, admission examination features, and operation characteristics. Finally, the features, including NIHSS, MRS, Hemiplegia aphasia, age, BMI and TIA etc. were found to be the top ten features in importance in predicting the LOS of ischemic stroke patients. Conclusions The XGBoost algorithm was an appropriate machine learning method for predicting the LOS of patients with ischemic stroke. Based on the prediction model, an intelligent medical management prediction system could be developed to predict the LOS based on ischemic stroke patients' electronic medical records.
The non-linear absorption coefficients of C60 thin films at 633 nm were measured with the absolute measurement and the Z-scan method, respectively. Both measurements yield a large non-linear absorption coefficient beta =4.4 cm W-1 and 8.0 cm W-1. A thermal self-focusing effect was also observed. The possible mechanisms of the larger non-linear absorption were discussed. The authors predict that C60 thin film may be a good optical limiter for a continuous wave (CW) laser.
Abstract Background Aucubin (AU), an iridoid glucoside isolated from many traditional herbal medicines, has anti-osteoporosis and anti-apoptosis bioactivities. However, the effect of AU on the treatment of bone-fracture remains unknown. In the present study, the aims were to investigate the roles and mechanisms of AU not only on osteoblastogenesis of human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) and anti-oxidative stress injury in vitro, but also on bone-fracture regeneration by a rat tibial fracture model in vivo. Methods CCK-8 assay was used to assess the effect of AU on the viability and proliferation of hBM-MSCs. The expression of specific genes and proteins on osteogenesis, apoptosis and signaling pathways was measured by qRT-PCR, western blotting and immunofluorescence analysis. ALP staining and quantitative analysis were performed to evaluate ALP activity. ARS and quantitative analysis were performed to evaluate calcium deposition. DCFH-DA staining was used to assess the level of reactive oxygen species (ROS). A rat tibial fracture model was established to validate the therapeutic effect of AU in vivo. Micro-CT with quantitative analysis and histological evaluation were used to assess the therapeutic effect of AU locally injection at the fracture site. Results Our results revealed that AU did not affect the viability and proliferation of hBM-MSCs. Compared with control group, western blotting, PCR, ALP activity and calcium deposition proved that AU-treated groups promoted osteogenesis of hBM-MSCs. The ratio of phospho-Smad1/5/9 to total Smad also significantly increased after treatment of AU. AU-induced expression of BMP2 signaling target genes BMP2 and p-Smad1/5/9 as well as of osteogenic markers COL1A1 and RUNX2 was downregulated after treating with noggin and LDN193189. Furthermore, AU promoted the translocation of Nrf2 from cytoplasm to nucleus and the expression level of HO1 and NQO1 after oxidative damage. In a rat tibial fracture model, local injection of AU promoted bone regeneration. Conclusions Our study demonstrates the dual effects of AU in not only promoting bone-fracture healing by regulating osteogenesis of hBM-MSCs partly via canonical BMP2/Smads signaling pathway but also suppressing oxidative stress damage partly via Nrf2/HO1 signaling pathway.