Recently, deep convolutional neural network (CNN) have achieved promising performance for single image super-resolution (SISR). However, they usually extract features on a single scale and lack sufficient supervision information, leading to undesired artifacts and unpleasant noise in super-resolution (SR) images. To address this problem, we first propose a hierarchical feature extraction module (HFEM) to extract the features in multiple scales, which helps concentrate on both local textures and global semantics. Then, a hierarchical guided reconstruction module (HGRM) is introduced to reconstruct more natural structural textures in SR images via intermediate supervisions in a progressive manner. Finally, we integrate HFEM and HGRM in a simple yet efficient end-to-end framework named hierarchical generative adversarial networks (HSR-GAN) to recover consistent details, and thus obtain the semantically reasonable and visually realistic results. Extensive experiments on five common datasets demonstrate that our method shows favorable visual quality and superior quantitative performance compared to state-of-the-art methods for SISR.
Face reenactment aims to animate a source face image to a different pose and expression provided by a driving image. Existing approaches are either designed for a specific identity, or suffer from the identity preservation problem in the one-shot or few-shot scenarios. In this paper, we introduce a method for one-shot face reenactment, which uses the reconstructed 3D meshes (i.e., the source mesh and driving mesh) as guidance to learn the optical flow needed for the reenacted face synthesis. Technically, we explicitly exclude the driving face's identity information in the reconstructed driving mesh. In this way, our network can focus on the motion estimation for the source face without the interference of driving face shape. We propose a motion net to learn the face motion, which is an asymmetric autoencoder. The encoder is a graph convolutional network (GCN) that learns a latent motion vector from the meshes, and the decoder serves to produce an optical flow image from the latent vector with CNNs. Compared to previous methods using sparse keypoints to guide the optical flow learning, our motion net learns the optical flow directly from 3D dense meshes, which provide the detailed shape and pose information for the optical flow, so it can achieve more accurate expression and pose on the reenacted face. Extensive experiments show that our method can generate high-quality results and outperforms state-of-the-art methods in both qualitative and quantitative comparisons.
An autostereogram, a.k.a. magic eye image, is a single-image stereogram that can create visual illusions of 3D scenes from 2D textures. This paper studies an interesting question that whether a deep CNN can be trained to recover the depth behind an autostereogram and understand its content. The key to the autostereogram magic lies in the stereopsis - to solve such a problem, a model has to learn to discover and estimate disparity from the quasi-periodic textures. We show that deep CNNs embedded with disparity convolution, a novel convolutional layer proposed in this paper that simulates stereopsis and encodes disparity, can nicely solve such a problem after being sufficiently trained on a large 3D object dataset in a self-supervised fashion. We refer to our method as ``NeuralMagicEye''. Experiments show that our method can accurately recover the depth behind autostereograms with rich details and gradient smoothness. Experiments also show the completely different working mechanisms for autostereogram perception between neural networks and human eyes. We hope this research can help people with visual impairments and those who have trouble viewing autostereograms. Our code is available at \url{https://jiupinjia.github.io/neuralmagiceye/}.
Under the assumption that human visual perception is highly adapted for extracting structural information from a scene, we present a new approach using structural similarity index for assessing quality in image fusion. The advantages of our measures are that they do not require a reference image and can be easily computed. Numerous simulations demonstrate that our measures are conform to subjective evaluations and can be able to assess different image fusion methods.
The paper proposes a novel generative adversarial network for one-shot face reenactment, which can animate a single face image to a different pose-and-expression (provided by a driving image) while keeping its original appearance. The core of our network is a novel mechanism called appearance adaptive normalization, which can effectively integrate the appearance information from the input image into our face generator by modulating the feature maps of the generator using the learned adaptive parameters. Furthermore, we specially design a local net to reenact the local facial components (i.e., eyes, nose and mouth) first, which is a much easier task for the network to learn and can in turn provide explicit anchors to guide our face generator to learn the global appearance and pose-and-expression. Extensive quantitative and qualitative experiments demonstrate the significant efficacy of our model compared with prior one-shot methods.
Facial action unit (AU) intensity is an index to describe all visually discernible facial movements. Most existing methods learn intensity estimator with limited AU data, while they lack of generalization ability out of the dataset. In this paper, we present a framework to predict the facial parameters (including identity parameters and AU parameters) based on a bone-driven face model (BDFM) under different views. The proposed framework consists of a feature extractor, a generator, and a facial parameter regressor. The regressor can fit the physical meaning parameters of the BDFM from a single face image with the help of the generator, which maps the facial parameters to the game-face images as a differentiable renderer. Besides, identity loss, loopback loss, and adversarial loss can improve the regressive results. Quantitative evaluations are performed on two public databases BP4D and DISFA, which demonstrates that the proposed method can achieve comparable or better performance than the state-of-the-art methods. What's more, the qualitative results also demonstrate the validity of our method in the wild.
3D Morphable Model (3DMM) based methods have achieved great success in recovering 3D face shapes from single-view images. However, the facial textures recovered by such methods lack the fidelity as exhibited in the input images. Recent work demonstrates high-quality facial texture recovering with generative networks trained from a large-scale database of high-resolution UV maps of face textures, which is hard to prepare and not publicly available. In this paper, we introduce a method to reconstruct 3D facial shapes with high-fidelity textures from single-view images in-the-wild, without the need to capture a large-scale face texture database. The main idea is to refine the initial texture generated by a 3DMM based method with facial details from the input image. To this end, we propose to use graph convolutional networks to reconstruct the detailed colors for the mesh vertices instead of reconstructing the UV map. Experiments show that our method can generate high-quality results and outperforms state-of-the-art methods in both qualitative and quantitative comparisons.
In this paper we tackle the problem of pose guided person image generation, which aims to transfer a person image from the source pose to a novel target pose while maintaining the source appearance. Given the inefficiency of standard CNNs in handling large spatial transformation, we propose a structure-aware flow based method for high-quality person image generation. Specifically, instead of learning the complex overall pose changes of human body, we decompose the human body into different semantic parts (e.g., head, torso, and legs) and apply different networks to predict the flow fields for these parts separately. Moreover, we carefully design the network modules to effectively capture the local and global semantic correlations of features within and among the human parts respectively. Extensive experimental results show that our method can generate high-quality results under large pose discrepancy and outperforms state-of-the-art methods in both qualitative and quantitative comparisons.
Chinese character style transfer is a very challenging problem because of the complexity of the glyph shapes or underlying structures and large numbers of existed characters, when comparing with English letters. Moreover, the handwriting of calligraphy masters has a more irregular stroke and is difficult to obtain in real-world scenarios. Recently, several GAN-based methods have been proposed for font synthesis, but some of them require numerous reference data and the other part of them have cumbersome preprocessing steps to divide the character into different parts to be learned and transferred separately. In this paper, we propose a simple but powerful end-to-end Chinese calligraphy font generation framework ZiGAN, which does not require any manual operation or redundant preprocessing to generate fine-grained target style characters with few-shot references. To be specific, a few paired samples from different character styles are leveraged to attain fine-grained correlation between structures underlying different glyphs. To capture valuable style knowledge in target and strengthen the coarse-grained understanding of character content, we utilize multiple unpaired samples to align the feature distributions belonging to different character styles. By doing so, only a few target Chinese calligraphy characters are needed to generated expected style transferred characters. Experiments demonstrate that our method has a state-of-the-art generalization ability in few-shot Chinese character style transfer.
Deep implicit field regression methods are effective for 3D reconstruction from single-view images. However, the impact of different sampling patterns on the reconstruction quality is not well-understood. In this work, we first study the effect of point set discrepancy on the network training. Based on Farthest Point Sampling algorithm, we propose a sampling scheme that theoretically encourages better generalization performance, and results in fast convergence for SGD-based optimization algorithms. Secondly, based on the reflective symmetry of an object, we propose a feature fusion method that alleviates issues due to self-occlusions which makes it difficult to utilize local image features. Our proposed system Ladybird is able to create high quality 3D object reconstructions from a single input image. We evaluate Ladybird on a large scale 3D dataset (ShapeNet) demonstrating highly competitive results in terms of Chamfer distance, Earth Mover's distance and Intersection Over Union (IoU).