Clock sweeping can be used to generate signatures for the purpose of detecting hardware Trojans. With the help of simulations and FPGA results, this article demonstrates the effectiveness of their proposed clock-sweeping technique under process variations, even for Trojans as small as a few gates.
Electrical capacitance tomography (ECT) techniques have been developed to visualize industrial processes with dielectric materials. Phase-sensitive demodulator (PSD) is a crucial part in ECT system. Different methods of demodulation are demonstrated in this paper, including analogue and digital methods. Analogue demodulator can not overcome shortcomings of analogue devices which have been a bottleneck of imaging precision and speed. A digital demodulator based on FPGA and DSP is designed in this paper, and realizes the full digital quadrature demodulation. Both the systematic speed and precision are improved.
Based on simulation analysis,the distribution of main transformer overvoltage and arrester position under lightning wave is found out.The maximum protective distance is presented.
The recycling of electronic components has become a major concern for the industry and government as it potentially impacts the security and reliability of a wide variety of electronic systems. The sheer number of component types (analog, digital, mixed-signal) and sizes (large or small) makes it extremely challenging to find a one-size-fits-all solution to detect and prevent recycled ICs. In this paper, we propose a suite of solutions for combating die and IC recycling (CDIR). These solutions include light-weight, on-chip structures based on ring oscillators (RO-CDIR), anti-fuses (AF-CDIR) and fuses (F-CDIR). Each structure meets the unique needs and limitations of different part types and sizes providing excellent coverage of recycled parts. HSPICE simulation results using 90nm technology demonstrate the effectiveness of our proposed negative-bias temperature instability (NBTI)-aware RO-CDIR for detecting ICs used for very short period of time. Recycling of large digital ICs can effectively be detected by using AF-CDIR. Small analog and digital recycled components can be identified by testing our F-CDIR with very low cost measurement devices, e.g., a multimeter.
This book describes techniques to verify the authenticity of integrated circuits (ICs). It focuses on hardware Trojan detection and prevention and counterfeit detection and prevention. The authors discuss a variety of detection schemes and design methodologies for improving Trojan detection techniques, as well as various attempts at developing hardware Trojans in IP cores and ICs. While describing existing Trojan detection methods, the authors also analyze their effectiveness in disclosing various types of Trojans, and demonstrate several architecture-level solutions.
The counterfeiting and recycling of integrated circuits (ICs) have become major issues in recent years, potentially impacting the security and reliability of electronic systems bound for military, financial, or other critical applications. With identical functionality and packaging, it would be extremely difficult to distinguish recycled ICs from unused ICs. In this paper, two types of on-chip lightweight sensors are proposed to identify recycled ICs by measuring circuit usage time when used in the field. Recycled ICs detection based on aging in ring oscillators (ROs-based) and antifuse (AF-based) are the two techniques presented in this paper. For RO-based sensors, statistical data analysis is used to separate process and temperature variations' effects on the sensor from aging experienced by the sensor in the ICs. For AF-based sensor, counters and embedded one-time programmable memory are used to record the usage time of ICs by counting the cycle of system clock or switching activities of a certain number of nets in the design. Simulation results using 90-nm technology and silicon results from 90-nm test chips show the effectiveness of RO-based sensors for identification of recycled ICs. In addition, the analysis of usage time stored in AF-based sensors shows that recycled ICs, even used for a very short period, can be accurately identified.