Phosphatidylcholine is one of the major phospholipids comprising cellular membrane and is known to have several health-promoting activities, including the improvement of brain function and liver repair. In this paper, we examine the in vivo effect of dietary supplementation with phosphatidylcholine on the response to environmental stressors and aging in C. elegans. Treatment with phosphatidylcholine significantly increased the survival of worms under oxidative stress conditions. However, there was no significant difference in response to stresses caused by heat shock or ultraviolet irradiation. Oxidative stress is believed to be one of the major causal factors of aging. Then, we examined the effect of phosphatidylcholine on lifespan and age-related physiological changes. Phosphatidylcholine showed a lifespan-extending effect and a reduction in fertility, possibly as a tradeoff for long lifespan. Age-related decline of motility was also significantly delayed by supplementation with phosphatidylcholine. Interestingly, the expressions of well-known longevity-assuring genes, hsp-16.2 and sod-3, were significantly upregulated by dietary intervention with phosphatidylcholine. DAF-16, a transcription factor modulating stress response genes, was accumulated in the nucleus by phosphatidylcholine treatment. Increase of the ROS level with phosphatidylcholine suggests that the antioxidant and lifespan-extending effects are due to the hormetic effect of phosphatidylcholine. Phosphatidylcholine also showed a protective effect against amyloid beta-induced toxicity in Alzheimer's disease model animals. Experiments with long-lived mutants revealed that the lifespan-extending effect of phosphatidylcholine specifically overlapped with that of reduced insulin/IGF-1-like signaling and required DAF-16. These findings showed the antioxidant and antiaging activities of phosphatidylcholine for the first time in vivo. Further studies focusing on the identification of underlying cellular mechanisms involved in the antiaging effect will increase the possibility of using phosphatidylcholine for the development of antiaging therapeutics.
Developments of non-viral carriers have headed toward reducing cytotoxicity, which results from the use of conventional gene carriers, and enhancing gene delivery efficiency. Cys-(d-R9)-Cys repeated reducible poly(oligo-D-arginine) (rPOA) is one of the most efficient non-viral carriers for gene therapy; however, while its efficiency has been verified in the lung and brain, it is necessary to confirm its activity in each organ or tissue since there are differences of gene carrier susceptibility to among tissue types. We therefore tested the compatibility of rPOA in cardiac tissue by in vitro or in vivo experiments and confirmed its high transfection efficiency and low cytotoxicity. Moreover, substantial regenerative effects were observed following transfection with rPOA/pVEGF expression vector complexes (79% decreased infarct size) compared to polyethyleneimine (PEI) (34% decreased infarct size) in a rat myocardial infarction (MI) model. These findings suggest that rPOA efficiently enables DNA transfection in cardiac tissue and can be used as a useful non-viral therapeutic gene carrier for gene therapy in ischemic heart disease.
This study has conducted physicochemical quality evaluation of commercial oyster sauce, oyster steaming concentrate and oyster fermentation to suggest possibility of settling oyster fermentation sauce manufacture method. The study selected oyster fermentation, oyster steaming concentrate and 11 types of commercial oyster sauce for the experiment. The oyster fermentation was triturated, mixed with Korean bay salt in amount of 23% of entire oyster and rested it for 180days at 25℃ for trial sample. As for the commercial oyster sauce, the study selected 11 types on sale at large supermarket for experiment. As the result, the TN(total nitrogen) content was 0.18-1.67%, AN(amino nitrogen) content was 270.58-1102.43mg/100 g, VBN(volatile basic nitrogen) content was 0.66-112.78mg/100 g, pH was 5.46-7.01, moisture was 48.26-72.72%, and salinity was 6.79-22.36%. In addition, through color and free amino acid composition measurement, it confirmed the possibility of manufacturing oyster sauce with deep flavor of oyster fermentation.
Qualities properties of fish sauce made jack mackerel (Trachurns japonicus) at different salt concentrations (25~35%) for 240 days at fermentation temperature ($25{\sim}55^{\circ}C$) were investigated. Total nitrogen content of the fish sauce made jack mackerel at 25% salt concentration after 240 day of fermentation was higher than those of 30%, 35% salt concentration. Total nitrogen content was increased under the same condition as fermentation temperature increased except at $55^{\circ}C$. Amino nitrogen contents at 25% salt concentration after 240 day of fermentation at 35, 45, $55^{\circ}C$ were 949.3, 812.8 and 834.4 mg/100 g, respectively. Those at 25, $55^{\circ}C$ fermentation temperature were 811.2 and 614.8 mg/100 g, respectively. The amino acid nitrogen content at 30 and 35% salt concentration ware lower than 20% salt concentration and that after 240 day of fermentation at $55^{\circ}C$ was lowest. The volatile basic nitrogen content increased during fermentation as fermentation temperature increased. However, increasing salt concentration controlled the formation of volatile basic nitrogen. Histamine content of samples fermented at $25{\sim}55^{\circ}C$ after 240 days were 9~20 mg/kg showing that it was not significantly different among salt concentration. The results indicated that the controlled salt concentration and fermentation temperature could be used as a successful process for fish sauce of jack mackerel as an unused resource.
Curcumin, a compound found in Indian yellow curry, is known to possess various biological activities, including anti-oxidant, anti-inflammatory, and anti-cancer activities. Cur2004-8 is a synthetic curcumin derivative having symmetrical bis-alkynyl pyridines that shows a strong anti-angiogenic activity. In the present study, we examined the effect of dietary supplementation with Cur2004-8 on response to environmental stresses and aging using Caenorhabditis elegans as a model system. Dietary intervention with Cur2004-8 significantly increased resistance of C. elegans to oxidative stress. Its anti-oxidative-stress effect was greater than curcumin. However, response of C. elegans to heat stress or ultraviolet irradiation was not significantly affected by Cur2004-8. Next, we examined the effect of Cur2004-8 on aging. Cur2004-8 significantly extended both mean and maximum lifespan, accompanying a shift in time-course distribution of progeny production. Age-related decline in motility was also delayed by supplementation with Cur2004-8. In addition, Cur2004-8 prevented amyloid-beta-induced toxicity in Alzheimer's disease model animals which required a forkhead box (FOXO) transcription factor DAF-16. Dietary supplementation with Cur2004-8 also reversed the increase of mortality observed in worms treated with high-glucose-diet. These results suggest that Cur2004-8 has higher anti-oxidant and anti-aging activities than curcumin. It can be used for the development of novel anti-aging product.
Fisetin (3,3',4',7-tetrahydroxyflavone), a flavonoid abundant in various fruits and vegetables, including apple, strawberry, and onion, shows several beneficial effects such as anti-oxidant, anti-inflammatory, and anti-tumor effects. The free radical theory of aging suggests that age-related accumulation of oxidative damage is the major cause of aging and that decreasing cellular oxidative stress can regulate aging. Here, we investigated the effects of dietary supplementation with fisetin on the stress response, aging, and age-related diseases. Fisetin reduced the cellular ROS levels and increased the resistance to oxidative stress. However, the response to UV irradiation was not affected by fisetin. Both the mean and maximum lifespans were significantly extended by fisetin; lifespan extension by fisetin was accompanied by reduced fertility as a trade-off. Age-related decline in motility was also delayed by supplementation with fisetin. Amyloid beta-induced toxicity was markedly decreased by fisetin, which required DAF-16 and SKN-1. Reduced motility induced by a high-glucose diet was completely recovered by supplementation with fisetin, which was dependent on SKN-1. Using a Parkinson's disease model, we showed that degeneration of dopaminergic neurons was significantly inhibited by treatment with fisetin. Genetic analysis revealed that lifespan extension by fisetin was mediated by DAF-16-induced stress response and autophagy. These findings support the free radical theory of aging and suggest that fisetin can be a strong candidate for use in novel anti-aging anti-oxidant nutraceuticals.