A Korean herbal medicine, KOTMIN13, composed of Inula japonica Thunberg, Trichosanthes kirilowii Maximowicz var. japonica kitamura, Peucedanum praeruptorum Dunn, and Allium macrostemon Bge, has been used for anti-allergic and anti-asthmatic treatment in oriental clinics, but its activity has not been investigated.To evaluate the anti-inflammatory activity of KOTMIN13 for in vitro study, LPS-stimulated RAW 264.7 cells were used to induce the production and expression of inflammatory mediators and its mechanisms. 12-O-Tetradecanoylphorobol-13 aceate (TPA)-induced ear edema and carrageenan-induced paw edema models were also used to evaluate the effect of KOTMIN13 on acute inflammation in vivo.KOTMIN13 reduced the release of inflammatory mediators [nitric oxide, prostaglandin E2, interleukin (IL)-1β, and IL-6] and the protein expression of inducible nitric oxide synthase and cyclooxygenase-2 in LPS-stimulated RAW 264.7 cells. Mechanism studies showed the attenuation of LPS-induced NF-κB activation by KOTMIN13 via IκBα degradation abrogation and a subsequent decrease in nuclear p65 levels. Activation of mitogen-activated protein kinases (ERK, JNK, and p38) was also suppressed. Furthermore, KOTMIN13 ameliorated the development of TPA-induced ear edema and carrageenan-induced paw edema in acute inflammatory edema mouse models.Our study demonstrates that KOTMIN13 inhibits inflammatory mediators through the inhibitions of NF-κB and MAPK activities in LPS-induced RAW 264.7 cells, as well as acute inflammation in edema models, indicating that KOTMIN13 is an effective suppressor for anti-inflammatory activities.KOTMIN13 decrease the production of No, PGE2, and proinflammatory cytokine (TNF-∝, IL-1β,IL-6).KOTMIN13 Suppressed the degradation of NF-kβ and IKβα and the phosorylation of MAP Kinases.Topical application of KOTMIN13 reduced mouse ear edema.Oral administration of KOTMIN13 decreased carrageenan-induced paw edema. Abbreviations used: NO: nitric oxide; PGE2: prostaglandin E2; iNOS: inducible NO synthase; COX-2: cyclooxygenase-2; TNF-α: tumor necrosis factor-α; IL: interleukin; NF-κB: nuclear factor kappaB; MAPK: mitogen-activated protein kinases; ERK: extracellular signal regulated kinase; JNK: c-jun N terminal kinase; TPA: 12-O-tetradecanoylphorbol-13-acetate.
Mast cells play critical roles in allergic disorders such as atopic dermatitis and allergic asthma. The aim of this study was to investigate the anti-inflammatory and anti-asthmatic activities of 1,6-O,O-diacetylbritannilactone (OODBL) isolated from Inula japonica Thunb. (I. japonica) in a murine asthma model and bone marrow-derived mast cells (BMMCs). In an ovalbumin-induced asthma model, OODBL administration attenuated the airway hyper-responsiveness induced by aerosolized methacholine and serum IgE level in asthmatic mice. In vitro system, we found that OODBL reduced leukotriene C4 production and degranulation through the suppression of cytosolic phospholipase A2 phosphorylation and phospholipase Cγ-mediated Ca2+ influx in IgE/antigen-stimulated BMMCs. Taken together, OODBL may have therapeutic potential in the treatment of allergic diseases such as asthma.
Background: Detection of the viral load of Human Immunodeficiency Virus type 1 (HIV-1) RNA is important in clinical decision making and prognosis of HIV-infected patients. The aim of the study is to compare the performance of real-time RT-PCR (COBAS AmpliPrep/COBAS TaqMan HIV-1, CAP/CTM, Roche Diagnostics) and Nucleic Acid Sequence Based Amplification (NucliSens EasyQ HIV-1, NucliSens, BioMerieux) methods in Korean HIV-infected patients. Methods: Among the specimens requested for HIV-1 RNA viral load detection from 2005 to 2006, 153 specimens were selected based on the status of the specimens. CAP/CTM and NucliSens tests were performed according to the manufacturer's instruction. Results: HIV-1 RNA is detected by both tests in 93 specimens. Among the remainder, CAP/CTM detected HIV-1 RNA in 10 specimens, while the same specimens showed results lower than the detection limit with NucliSens. Though results correlated appropriately (r=0.85, P<0.0001), mean differences between the two test results were −0.1321 log10 IU/mL on Bland-Altman test. Conclusion: The methodologic difference or the presence of subtype may affect the agreement between the two tests. The standardization of methods and establishment of linear range in individual laboratory may be helpful to perform an accurate test. (Korean J Blood Transfus 2008;19:216-221)
Mast cells play an important role in allergic inflammation by releasing various bioactive mediators. The function of mast cells is enhanced by various stimuli, partly due to the induction of specific genes and their products. Although many inducible genes have been identified, a significant number of genes remain to be identified. Therefore, this study used PCR-selected cDNA subtraction to establish the profile of induced genes in the connective tissue (CT) type-like mast cells derived from bone marrow cells cultured in the presence of IL-4 and stem cell factor. Two hundred and fifty cDNA clones were obtained from the CT type-like mast cells by PCR-selected cDNA subtraction. Among them, Ym1/2, a chitinase-like protein, is one of the most abundantly induced genes. Ym1 is produced by activated macrophages in a parasitic infection, whereas its isotype, Ym2, is highly upregulated in allergic lung disease. In order to differentiate which isotype is expressed in bone marrow cells, specific primers for bone marrow-derived mast cells (BMMC), and CT type-like mast cells were used for RT-PCR. The results showed that Ym1 was constitutively expressed in bone marrow cells and gradually decreased in the presence of IL-3, whereas Ym2 was induced only in the presence of IL-4. CT type-like mast cells from bone marrow cells expressed Ym1 throughout the culture period and Ym2 was induced only by the addition of IL-4 into BMMC, indicating that IL-4 is essential for the expression of Ym1/2 genes.
Patients undergoing surgery have an increased risk for hospital-acquired infections. Various causes such as the catabolic response to surgery, old age, and co-existing diseases such as diabetes mellitus, make these patients more susceptible to nosocomial infections.
One of the major efforts to prevent hospital-acquired infections is personal hygiene of the health care provider, which reportedly reduces the incidence of hospital-acquired infections [1]. Another effort is the sterilization of instruments used in the operating rooms. Previous studies identified the anesthesiologists' hands and anesthetic equipment as possible contributing factors to the transmission of pathogenic organisms, as they are frequently in contact with upper airway secretions and the blood of patients [2].
We conducted this study with the infection control team of our hospital to assess the hygiene status of re-usable rubber tourniquets and to determine their proper care in the operating room. Reusable tourniquets are in direct contact with multiple surgical patients and the anesthesiologist's hands. We tried to determine whether simple alcohol swabbings could disinfect re-usable tourniquets.
This study took place in 30 operating rooms of 2 hospital buildings. The operating rooms were used for a wide range of surgical specialties. Collection and inoculation was performed in each operating room with aseptic technique. First, we analysed the gross appearance of the tourniquet to determine whether it was visibly soiled with dirt or blood. Second, the author who wore sterile gloves cut the tourniquet into 2 equal sizes using sterile scissors. Third, one half was rolled and pressed onto blood agar plates (BAP) and the other half was twice swabbed with 83% ethyl-alcohol, dried, and then rolled and pressed onto BAP. Subsequently, each part of the divided tourniquet was immediately immersed in a conical tube containing 40 ml of distilled water.
We used 2 methods to determine the hygiene of tourniquets, i.e. rolling and pressing onto BAP and inoculation of tourniquet derived solution into TSA.
BAP, which were inoculated with each divided tourniquet, were incubated at 35℃ for 48 hours. Organisms were identified from colony morphology, coagulase test, catalase test, and pyruvate reaction test by an experienced biomedical scientist. Colonies presumptively identified as Staphylococcus aureus or Enterococcus were subjected to further tests for antibiotic susceptibility to identify methicillin-resistant S. aureus (MRSA) or vancomycin-resistant Enterococcus (VRE).
The TSA media was incubated at 35℃ for 48 hours and the colonies were counted after one week. The total colony count was determined in colony-forming units (CFUs)/ml.
The questionnaire was distributed to anesthesiologists including professors, residents, and nursing staff involved with the peripheral intravascular catheter insertion in the operating room, to determine personal hygiene, hand washing or use of antimicrobial hand rubs, when the tourniquet was applied to the surgical patients in the operating room.
Paired t-test was used to compare the count of CFUs before and after alcohol swabbings. SAS software version 9.3 (SAS Institute Inc., Cary, NC, USA) was used for these analyses.
The expiration dates of the tourniquets were unknown. The most common reason for replacing a tourniquet was loss of the old one. Fifteen of the 30 (50%) tourniquets in the study were visibly soiled in appearance. Tourniquets from orthopedic operations showed the highest bacterial contamination (44.75 CFUs/ml).
We evaluated bacterial contamination of the re-usable tourniquets both before and after alcohol swabbing. No colonies were grown on blood agar plate culture in the alcohol swab - intervention group (100%). However various colonies were grown in the non-intervention group (100%) and they were identified by a microbiologist. Most colonies were S. aureus or enterococcus, however, none were positive for MRSA or VRE. All tourniquets before alcohol swabbings showed positive bacterial growth in the TSA culture. The amount of organisms found on the tourniquets (CFUs/ml) decreased significantly after alcohol swabbings (mean ± SD: 24.5 ± 6.3 vs. 3.5 ± 0.89, before and after swabbings respectively, P = 0.001). Alcohol swabbing (83% ethyl-alcohol) twice before the use of tourniquet decreased bacterial contamination considerably (mean reduction: 90.2 ± 11.5%).
Among the anesthesia staff who answered the questionnaire, 37% always washed their hands with soap or alcohol gel before intravascular catheter insertion, and 44% of the staff occasionally did. However, 19% of the staff made no attempts to clean their hands before cannulation (Table 1).
Table 1
Hand Hygiene Habits Regarding Tourniquet Use (n = 62)
The aim of this study was to confirm bacterial contamination of re-usable tourniquets in the operating room and to determine whether twice alcohol swabbings could eliminate bacterial organisms on the tourniquet.
All collected tourniquets in our study were negative for MRSA and VRE. However, previous studies reported differently. One study reported that 36% of tourniquets were positive for S. aureus and 12% were MRSA-positive [3]. Another study revealed that MRSA was isolated from 24.4% of collected tourniquets [4]. Results from our study differed from previous studies likely since the prior studies were conducted in general wards rather than in the operating rooms, which have relatively aseptic conditions.
Single use tourniquet is ideal, however as long as non-disposable tourniquets are used for various reasons, proper infection control is required. Kerstein and Fellowes [5] recommended disposable tourniquets because reducing transmission to patients by single-use tourniquets is more cost-effective, considering the cost of hospital-acquired infections.
In conclusion, tourniquet contamination is dependent on the hospital personnel's hygiene and that of the entire hospital. Poor hygiene combined with the careless use of tourniquets make reusable tourniquets a vehicle of hospital-acquired infections.