Tembusu virus is a newly emerging flavivirus that caused egg-drop syndrome in ducks in China. TMUV envelope protein is a major structural protein locates at the surface of tembusu virus particle. During tembusu virus infection, envelope protein plays a pivotal role in induction of neutralizing antibody. However, B cell epitopes within envelope protein have not been well studied. A series of 13 peptides derived from E protein of tembusu virus were synthesized and screened by Dot blot with tembusu virus-positive duck serum. Potential B-cell epitopes were respectively fused with GST tag and expressed in E. coli. The immunogenicity and protective efficiency of epitopes were assessed in ducks. Dot blot assay identified the peptides P21 (amino acids 301–329), P23 (amino acids 369–387), P27 (amino acids 464–471) and P28 (amino acids 482–496) as potential B-cell epitopes within the envelope protein of tembusu virus. Immunization of prokaryotically expressed epitopes elicited specific antibodies in ducks and the specific antibody elicited by P21, P27 and P28 could neutralized tembusu virus. In addition, protective test suggested that P21 and P27 could completely protect immunized ducks from TMUV challenge. Four potential B cell epiotpes within tembusu virus envelope protein were identified and analyzed in vitro and in vivo. It was demonstrated that two of them (P21 and P27) could elicit neutralizing antibodies in ducks and offer complete protection against tembusu virus challenge. This findings will contribute to the development of epitope vaccine for tembusu virus prevention.
Enhancer of zeste homolog 2 (EZH2), a component of the PRC2 complex, trimethylates H3K27, a transcriptionally repressive histone mark. EZH2 is encoded by a dormant maternal mRNA and inhibiting the maturation-associated increase in EZH2 activity using either a combined siRNA/morpholino approach or a small molecule inhibitor (GSK343) inhibits development of diploidized parthenotes to the blastocyst stage but not inseminated eggs, with longer GSK343 treatments leading to progressively greater inhibition of development. GSK343 treatment also results in a decrease in H3K27me3 and a decrease in global transcription in 2-cell parthenotes but not 2-cell embryos derived from inseminated eggs. RNA-sequencing revealed the relative abundance of ~100 zygotically-expressed transcripts is decreased by GSK treatment in parthenotes, but not in embryos, with many of the affected transcripts encoding proteins involved in transcription. A previous study found that parthenotes deficient in maternal Ezh2 readily develop to the blastocyst stage. To reconcile these differences we propose that the H3K27me3 state present in the zygote needs to be faithfully propagated following DNA replication in at least one pronucleus, otherwise development is compromised.
It is well known that the dairy cow production is very sensitive to environmental factors, including high temperature, high humidity and radiant heat sources. High temperature-induced heat stress is the main environmental factor that causes oxidative stress and apoptosis, which affects the development of mammary glands in dairy cows. Dihydromyricetin (DMY) is a nature flavonoid compound extracted from Ampelopsis grossedentata; it has been shown to have various pharmacological functions, such as anti-inflammation, antitumor and liver protection. The present study aims to evaluate the protective effect of DMY on heat stress-induced dairy cow mammary epithelial cells (DCMECs) apoptosis and explore the potential mechanisms. The results show that heat stress triggers heat shock response and reduces cell viability in DCMECs; pretreatment of DCMECs with DMY (25 μM) for 12 h significantly alleviates the negative effects of heat stress on cells. DMY can provide cytoprotective effects by suppressing heat stress-caused mitochondrial membrane depolarization and mitochondrial dysfunction, Bax and Caspase 3 activity, and modulation of oxidative enzymes, thereby preventing ROS production and apoptosis in DCMECs. Importantly, DMY treatment could attenuate heat stress-induced mitochondrial fragmentation through mediating the expression of mitochondrial fission and fusion-related genes, including Dynamin related protein 1 (Drp1), Mitochondrial fission 1 protein (Fis1), and Mitofusin1, 2 (Mfn1, 2). Above all, our findings demonstrate that DMY could protect DCMECs against heat stress-induced injury through preventing oxidative stress, the imbalance of mitochondrial fission and fusion, which provides useful evidence that DMY can be a promising therapeutic drug for protecting heat stress-induced mammary glands injury and mastitis.