Powdery mildew (PM) fungi are biotrophic pathogens that rely on living hosts to survive and thrive. However, their colonization is restricted by host defenses at both the penetration and post-penetration stages. The tobacco PM strain Golovinomyces cichoracearum (Gc) SICAU1 has overcome penetration resistance of Arabidopsis but its growth is arrested by post-penetration resistance. While Gc SICAU1 only poorly grows in Arabidopsis Col-0 wild-type plants, it can sustainably grow for more than 20 days on the same infected leaves of the double mutant pad4–1 sid2–1 that is defective in both the synthesis and signaling of salicylic acid (SA). To understand the underlying molecular mechanisms, we conducted a comparative transcriptome analysis between Col-0 and pad4–1 sid2–1 in response to Gc SICAU1. We found that 4811 genes were differentially expressed more than four-fold between any two of the measured seven time points (0, 1, 3, 6, 8, 10 and 12 days post-inoculation). Gene expression pattern analysis suggests that differential expression of 348 genes and 190 genes may explain resistance in Col-0 and susceptibility in pad4–1 sid2–1, respectively. Gene Ontology (GO) analysis suggests that Gc SICAU1 might be arrested in Col-0 by both pattern-triggered immunity and SA-dependent defense. By contrast, its sustained growth in pad4–1 sid2–1 may be attributable to the activation of a detoxification pathway that is normally repressed by the SA-signaling pathway. Taken together, our results suggest that multiple distinct, yet interconnected pathways control the growth of tobacco powdery mildew in Arabidopsis.
Regeneration of auditory hair cells (HCs) is a promising approach to restore hearing. Recent studies have demonstrated that induced pluripotent stem cells/embryonic stem cells or supporting cells (SCs) adjacent to HCs can be converted to adopt the HC fate. However, little is known about whether new HCs are characteristic of outer or inner HCs. Here, we showed in vivo conversion of 2 subtypes of SCs, inner border cells (IBs) and inner phalangeal cells (IPhs), to the inner HC (IHC) fate. This was achieved by ectopically activating Atoh1, a transcription factor necessary for HC fate, in IBs/IPhs at birth. Atoh1+ IBs/IPhs first turned on Pou4f3, another HC transcription factor, before expressing 8 HC markers. The conversion rate gradually increased from ∼2.4% at 1 week of age to ∼17.8% in adult. Interestingly, new HCs exhibited IHC characteristics such as straight line–shaped stereociliary bundles, expression of Fgf8 and otoferlin, and presence of larger outward currents than those of outer HCs. However, new HCs lacked the terminal differentiation IHC marker vGlut3, exhibited reduced density of presynaptic Cbtp2 puncta that had little postsynaptic GluR2 specialization, and displayed immature IHC outward currents. Our results demonstrate that the conversion rate of IBs/IPhs in vivo by Atoh1 ectopic expression into the IHC fate was higher and faster and the conversion was more complete than that of the 2 other SC subtypes underneath the outer HCs; however, these new IHCs are arrested before terminal differentiation. Thus, IBs/IPhs are good candidates to regenerate IHCs in vivo.
Long non-coding RNAs (lncRNAs) have been shown to be implicated in the complex network of cancer including malignant melanoma and play important roles in tumorigenesis and progression. However, their functions and downstream mechanisms are largely unknown. This study aimed to investigate whether BRAF-activated non-coding RNA (BANCR), a novel and potential regulator of melanoma cell, participates in the proliferation of malignant melanoma and elucidate the underlying mechanism in this process. We found that BANCR was abnormally overexpressed in human malignant melanoma cell lines and tissues, and increased with tumor stages by quantitative PCR. BANCR knockdown induced by shRNA transfection significantly inhibited proliferation of tumor cells and inactivated MAPK pathway, especially by silencing the ERK1/2 and JNK component. Moreover, combination treatment of BANCR knockdown and suppression ERK1/2 or JNK (induced by specific inhibitors U0126 or SP600125 respectively) produced synergistic inhibitory effects in vitro. And the inhibitory effects induced by ERK1/2 or JNK could be rescued by BANCR overexpression. By tumorigenicity assay in BALB/c nude mice, we further found that BANCR knockdown inhibited tumor growth in vivo. In addition, patients with high expression of BANCR had a lower survival rate. Taken together, we confirmed the abnormal upregulation of a novel lncRNA, BANCR, in human malignant melanoma. BANCR was involved in melanoma cell proliferation both in vitro and in vivo. The linkage between BANCR and MAPK pathway may provide a novel interpretation for the mechanism of proliferation regulation in malignant melanoma.
Abstract Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder causing impairments in social communication and stereotypical behaviors, often with developmental delay or intellectual disabilities (DD/ID). Accruing evidence indicates that ASD is highly heritable and genome-wide studies on ASD cohorts have defined numerous genetic contributors. Notably, since most of these studies have been performed with individuals of European and Hispanic ancestries, thus there is a paucity of genetic analyses of ASD in the East Asian population. Here, we performed whole-exome sequencing on 772 Chinese ASD trios, combining with a previous 369 ASD trios, to identify de novo variants in 1141 ASD trios. We found that ASD without DD/ID carried less disruptive de novo variants than ASD with DD/ID. Surprisingly, we found that expression of genes with de novo variants in ASD without DD/ID were enriched in a subtype of human neural progenitor cells. Importantly, some ASD risk genes identified in this study are not present in the current ASD gene database, suggesting that there may be unique genetic contributors to ASD with the East Asian ancestry. We validated one such novel ASD candidate gene – SLC35G1 by showing that mice harboring heterozygous deletion of Slc35g1 exhibited defects in social interaction behaviors. Together, this work nominates novel ASD candidate genes and suggests that genome-wide genetic studies in ASD cohorts of different ancestries are essential to reveal the comprehensive genetic architecture of ASD.
Microbiology Society journals contain high-quality research papers and topical review articles. We are a not-for-profit publisher and we support and invest in the microbiology community, to the benefit of everyone. This supports our principal goal to develop, expand and strengthen the networks available to our members so that they can generate new knowledge about microbes and ensure that it is shared with other communities.