Evidence for the efficacy of cognitive-motor dual-task (CMDT) training in patients with post-stroke cognitive impairment (PSCI) and no dementia is still lacking. More importantly, although some studies on the cognitive effect of CMDT training show an improvement in cognitive performance, the results are still controversial, and the intervention mechanism of CMDT training on cognitive function improvement is not clear. The main purpose of this study was to analyze the effects of CMDT training on cognitive function, neuron electrophysiology, and frontal lobe hemodynamics in patients with PSCI.Here we tested the effects of CMDT training on cognitive function in PSCI patients. Forty subjects who met the criteria of PSCI were randomly assigned to control and experimental groups. CMDT training or cognitive task (CT) training was administered to each patient in the experimental and control groups, respectively. All subjects performed Mini-mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scale before and after the intervention, and the event-related potentials (ERP) and functional near-infrared spectroscopy (fNIRS) were used to evaluate the changes in neuron electrophysiology and hemodynamics.Forty patients were randomized across Beijing Rehabilitation Hospital Capital Medical University in Beijing. At the end of the intervention, 33 subjects completed the experimental process. The CMDT group showed significant improvement in the MMSE (P = 0.01) and MoCA (P = 0.024) relative to the CT group. The results of ERP and fNIRS showed that CMDT training could shorten the latency of P300 (P = 0.001) and the peak time of oxygenated hemoglobin (P = 0.004). The results showed that CMDT training shortened the response time of central neurons and significantly increased the rate of oxygen supply to the frontal lobe.CMDT training in patients with PSCI improved global cognitive function, which was supported by the improved neural efficiency of associated brain areas.http://www.chictr.org.cn, identifier ChiCTR2000034862.
In testing gun muzzle blast fields, deploying distributed wireless sensor networks is a flexible and efficient data acquisition method. However, the data transmission characteristics with the high sampling rate of single nodes and the high concurrency of multiple nodes lead to an excessively large overall data volume, which exceeds the existing wireless bandwidth carrying capacity. Therefore, this paper introduces distributed compressed sensing into the shock wave field test to reduce the overall transmission data volume by downsampling the sensor sources to meet the bandwidth requirements. Firstly, the paper analyses the signal-to-signal correlation of multiple shockwave signals within the network to meet the DCS down sampling constraints. Secondly, the performance of typical reconstruction algorithms in single and joint reconstruction is compared. Finally, the feasibility of applying DCS to shockwave field testing is verified, which provides a new idea for the data acquisition method of distributed wireless sensing networks.
Cynops orientalis (C. orientalis) has a pronounced ability to regenerate its spinal cord after injury. Thus, exploring the molecular mechanism of this process could provide new approaches for promoting mammalian spinal cord regeneration. In this study, we established a model of spinal cord thoracic transection injury in C. orientalis, which is an endemic species in China. We performed RNA sequencing of the contused axolotl spinal cord at two early time points after spinal cord injury - during the very acute stage (4 days) and the subacute stage (7 days) - and identified differentially expressed genes; additionally, we performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, at each time point. Transcriptome sequencing showed that 13,059 genes were differentially expressed during C. orientalis spinal cord regeneration compared with uninjured animals, among which 4273 were continuously down-regulated and 1564 were continuously up-regulated. Down-regulated genes were most enriched in the Gene Ontology term "multicellular organismal process" and in the ribosome pathway at 10 days following spinal cord injury. We found that multiple genes associated with energy metabolism were down-regulated and multiple genes associated with the lysosome were up-regulated after spinal cord injury, indicating the importance of low metabolic activity during wound healing. Immune response-associated pathways were activated during the early acute phase (4 days), while the expression of extracellular matrix proteins such as glycosaminoglycan and collagen, as well as tight junction proteins, was lower at 10 days post-spinal cord injury than 4 days post-spinal cord injury. However, compared with 4 days post-injury, at 10 days post-injury neuroactive ligand-receptor interactions were no longer down-regulated, up-regulated differentially expressed genes were enriched in pathways associated with cancer and the cell cycle, and SHH, VIM, and Sox2 were prominently up-regulated. Immunofluorescence staining showed that glial fibrillary acidic protein was up-regulated in axolotl ependymoglial cells after injury, similar to what is observed in mammalian astrocytes after spinal cord injury, even though axolotls do not form a glial scar during regeneration. We suggest that low intracellular energy production could slow the rapid amplification of ependymoglial cells, thereby inhibiting reactive gliosis, at early stages after spinal cord injury. Extracellular matrix degradation slows cellular responses, represses the expression of neurogenic genes, and reactivates a transcriptional program similar to that of embryonic neuroepithelial cells. These ependymoglial cells act as neural stem cells: they migrate and proliferate to repair the lesion and then differentiate to replace lost glial cells and neurons. This provides the regenerative microenvironment that allows axon growth after injury.