Aims Two‐thirds of early pregnancy failures present with reduced trophoblast invasion, and SLIT 2/ ROBO 1 signalling is considered to play an important role in trophoblast function during pregnancy. We investigated SLIT 2/ ROBO 1 signalling associated with missed and threatened miscarriage during early gestation. Methods and results Human placenta samples were collected from women with missed miscarriage ( n = 25), threatened miscarriage ( n = 22) and termination of pregnancy controls ( n = 32). Corresponding decreases in beta human chorionic gonadotrophin (β‐hCG) levels and shallow trophoblast invasion were observed in patients with missed and threatened miscarriage, immunohistological staining revealed abnormal Slit2 and Robo1, as well as E‐cadherin and activating protein‐2 alpha (AP‐2α) expression in villi and extravillous trophoblasts, and the expression of these proteins were confirmed in villi and decidua of miscarriage material by Western blotting. Using HTR8/SVneo cells, blocking SLIT2/ROBO1 signalling promoted cell migration, proliferation and suppressed differentiation. Moreover, blocking SLIT2/ROBO1 signalling in HTR8/SVneo cells altered trophoblast differentiation‐related and angiogenesis‐related gene mRNA expression, which also occurred in the tissues of missed and threatened miscarriage. Conclusions SLIT 2/ ROBO 1 signalling may regulate trophoblast differentiation and invasion causing restricting β‐ hCG production, shallow trophoblast invasion and inhibiting placental angiogenesis in missed and threatened miscarriage during the first trimester.
Both pre-gestational and gestational diabetes have an adverse impact on heart development, but little is known about the influence on the early stage of heart tube formation. Using early gastrulating chick embryos, we investigated the influence of high glucose on the process of heart tube formation, specifically during the primary heart field phase. We demonstrated that high-glucose exposure resulted in 3 types of heart tube malformation: 1) ventricular hypertrophy, 2) ventricular hypertrophy with dextrocardia and 3) ventricular hypertrophy and dextrocardia with the fusion anomaly of a bilateral primary heart tube. Next, we found that these malformation phenotypes of heart tubes might mainly originate from the migratory anomaly of gastrulating precardiac mesoderm cells rather than cell proliferation in the developmental process of bilateral primary heart field primordia. The treatment of rapamycin (RAPA), an autophagy inducer, led to a similar heart tube malformation phenotype as high glucose. Additionally, high-glucose exposure promoted the expression of the key autophagy protein LC3B in early chick tissue. Atg7 is strongly expressed in the fusion site of bilateral primary heart tubes. All of these data imply that autophagy could be involved in the process of high-glucose-induced malformation of the heart tube.
The BRE (brain and reproductive expression) gene, highly expressed in nervous and reproductive system organs, plays an important role in modulating DNA damage repair under stress response and pathological conditions. Folliculogenesis, a process that ovarian follicle develops into maturation, is closely associated with the interaction between somatic granulosa cell and oocyte. However, the regulatory role of BRE in follicular development remains undetermined. In this context, we found that BRE is normally expressed in the oocytes and granulosa cells from the primordial follicle stage. There was a reduction in follicles number of BRE mutant (BRE-/-) mice. It was attributed to increase the follicular atresia in ovaries, as a result of retarded follicular development. We established that cell proliferation was inhibited, while apoptosis was markedly increased in the granulosa cells in the absence of BRE. In addition, expressions of γ-H2AX (marker for showing DNA double-strand breaks) and DNA damage-relevant genes are both upregulated in BRE-/- mice. In sum, these results suggest that the absence of BRE, deficiency in DNA damage repair, causes increased apoptosis in granulosa cells, which in turn induces follicular atresia in BRE-/- mice.
Patients with early-onset preeclampsia (EOPE) have a most severe disease state. a2-macroglobulin (A2M) play a crucial role in the pathogenesis of EOPE, but its molecular basis and therapeutic potential remain unclear. This study aimed to elucidate the mechanisms of A2M in EOPE progression and explore the potential of A2M in the treatment of EOPE. A2M-Low Density Lipoprotein Receptor-Related Protein 1 (LRP1) blocker Receptor-associated protein (RAP) were utilized to alleviate the disease symptom of lipopolysaccharide (LPS) induced preeclampsia rat model. RNA-seq data sourced from public databases and morphological experiments were utilized to examine the relationship between the main fate of smooth muscle cell (SMC) during uterine spiral artery remodeling (SPA-REM) and A2M. Proteomic sequencing analysis of A2M overexpression rat placenta was used to identify the underlying mechanism. Further, LC-MS/MS analysis combined with Co-immunoprecipitation (Co-IP) was used to examine the interacting between A2M and underlying mechanism. Single-cell analysis and morphological experimental results suggest that SMC phenotype switching disorder is the main fate of SMC in the pathological of SPA-REM disorder, and A2M has a causal relationship with this process. Proteomic sequencing data suggest that A2M participates in this process through the RhoA-GTPase pathway, further experimental data provide evidences that A2M can directly upregulate RhoA-GTPase. Cytological and explant experiments suggest that RAP has better efficacy than A2M knockdown AAV vector, finally the efficacy of RAP was verified in the rat model of preeclampsia. SMC A2M promotes the progression of preeclampsia by directly upregulating RhoA-GTPase. Our findings also reveal that A2M serve as a potential target for EOPE and provide a preliminary therapy for inhibit the combination of A2M-LRP1.
Although it is known that prenatal maternal stress (PNMS) has a negative influence on nervous system development in offspring, there is no conclusive evidence clarifying its impact on early neurogenesis during development. In this study, we established a chick embryo model to investigate how PNMS affects early neurogenesis by mimicking an intrauterine environment with elevated dexamethasone levels. The results showed that dexamethasone-mimicked PNMS significantly suppressed the development of gastrula embryos and increased the risks of neural tube defects and cranial deformity. Using immunofluorescence staining and Western blots to evaluate the expression levels of pHIS3 and PCNA/Sox2, we found that PNMS significantly inhibited the proliferation of neural progenitor cells and that the downregulation of TGF-β signaling pathway might be responsible for the inhibition. Furthermore, immunofluorescence staining and Western blots manifested that PNMS could suppress the differentiation of neural progenitor cells to neuronal lineages, but promote them to transform into neuroglial cells, which might be due to the restriction of expressions of key genes (BMP4, SHH, Wnt3a, Slug, and Msx1) related to neural differentiation. In summary, our data reveal that PNMS dramatically impacts the earliest stages of neural development, thereby greatly increasing the risk of physical and mental health problems in childhood or adulthood.
The anti-metastasis effect of nobiletin was investigated using experimental lung metastasis model mice by injection of melanoma cells K111 from caudal vein. The influence of nobiletin on amount of gelatinases MMP2 and MMP9 secreted by K111 cells in vitro was also tested. The results showed that nobiletin could effectively inhibit the experimental lung metastasis of melanoma cells,the inhibition rate against metastasis was 47.3% at 32mg/kg. The results of gelatin zymography showed that the secretion of the MMP2 and MMP9 was decreased at the drug concentration of 125 and 62.5μmol/L,the expression rates of the two groups were about 30% and 50%, compared with the control. Real time PCR assay demonstrated that mRNA level of MMP2 and MMP9 in K111 cells treated with 125μmol/L nobiletin was also lower than that of the control. The results indicated that nobiletin could down-regulate the expression of MMP2 and MMP9 at transcriptional level and metastasis as well in mice model.
Aims: To determine the potential diagnostic and therapeutic targets of Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS). Methods: We selected the GSE11783, GSE57560 and GSE621 datasets from the GEO database and merged them. R software was used to screen differentially expressed genes (DEGs) between IC/BPS and normal bladder tissues. The
Caffeine consumption is worldwide. It has been part of our diet for many centuries; indwelled in our foods, drinks, and medicines. It is often perceived as a “legal drug”, and though it is known to have detrimental effects on our health, more specifically, disrupt the normal fetal development following excessive maternal intake, much ambiguity still surrounds the precise mechanisms and consequences of caffeine-induced toxicity. Here, we employed early chick embryos as a developmental model to assess the effects of caffeine on the development of the fetal nervous system. We found that administration of caffeine led to defective neural tube closures and expression of several abnormal morphological phenotypes, which included thickening of the cephalic mesenchymal tissues and scattering of somites. Immunocytochemistry of caffeine-treated embryos using neural crest cell markers also demonstrated uncharacteristic features; HNK1 labeled migratory crest cells exhibited an incontinuous dorsal-ventral migration trajectory, though Pax7 positive cells of the caffeine-treated groups were comparatively similar to the control. Furthermore, the number of neurons expressing neurofilament and the degree of neuronal branching were both significantly reduced following caffeine administration. The extent of these effects was dose-dependent. In conclusion, caffeine exposure can result in malformations of the neural tube and induce other teratogenic effects on neurodevelopment, although the exact mechanism of these effects requires further investigation.
Hyperglycemia in diabetic mothers enhances the risk of fetal cardiac hypertrophy during gestation. However, the mechanism of high-glucose-induced cardiac hypertrophy is not largely understood. In this study, we first demonstrated that the incidence rate of cardiac hypertrophy dramatically increased in fetuses of diabetic mothers using color ultrasound examination. In addition, human fetal cardiac hypertrophy was successfully mimicked in a streptozotocin (STZ)-induced diabetes mouse model, in which mouse cardiac hypertrophy was diagnosed using type-M ultrasound and a histological assay. PH3 immunofluorescent staining of mouse fetal hearts and in vitro-cultured H9c2 cells indicated that cell proliferation decreased in E18.5, E15.5 and E13.5 mice, and cell apoptosis in H9c2 cells increased in the presence of high glucose in a dose-dependent manner. Next, we found that the individual cardiomyocyte size increased in pre-gestational diabetes mellitus mice and in response to high glucose exposure. Meanwhile, the expression of β-MHC and BMP-10 was up-regulated. Nkx2.5 immunofluorescent staining showed that the expression of Nkx2.5, a crucial cardiac transcription factor, was suppressed in the ventricular septum, left ventricular wall and right ventricular wall of E18.5, E15.5 and E13.5 mouse hearts. However, cardiac hypertrophy did not morphologically occur in E13.5 mouse hearts. In cultured H9c2 cells exposed to high glucose, Nkx2.5 expression decreased, as detected by both immunostaining and western blotting, and the expression of KCNE1 and Cx43 was also restricted. Taken together, alterations in cell size rather than cell proliferation or apoptosis are responsible for hyperglycemia-induced fetal cardiac hypertrophy. The aberrant expression of Nkx2.5 and its regulatory target genes in the presence of high glucose could be a principal component of pathogenesis in the development of fetal cardiac hypertrophy.