Each La3+ ion in the title complex, tetra-micro-2-fluorobenzoato-kappa10 O:O';O:O,O';O:O';O,O':O'-bis[aqua(4,4'-bipyridine-kappaN)(2-fluorobenzoato-kappaO)lanthanum(II)], [La(C7H4FO2)6(C10H8N2)2(H2O)2], is coordinated by six O atoms from the carboxylate groups of five 2-fluorobenzoate ligands, one O atom from a water molecule and one N atom from a 4,4'-bipyridine molecule, thus forming a dimeric molecule. An infinite one-dimensional dimeric supramolecular chain is formed via intermolecular hydrogen bonds.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Exploiting a photocatalyst with high stability and excellent activity for Cr(VI) reduction under mild conditions is crucial yet challenging. Herein, the rigid aromatic multicarboxylate ligand with chromophore anthracene was selected to coordinate with multivalent metal ion manganese and to obtain a stable two-dimensional (2D) Mn-based metal-organic framework (MOF),
Five new coordination compounds, {[Mn(L)(CH3OH)2] · CH3OH · H2O} n (1), {[Cd(L)(DMF)2(H2O)] · H2O} n (2), {[Co(L)(CH3OH)4] · CH3OH}2 (3), {[Cd(L)(phen)(CH3OH)] · CH3OH} n (4), and {[Mn(L)(phen)(H2O)] · CH3OH} n (5) (L = 5-ferrocene-1,3-benzenedicarboxylic acid, phen = 1,10-phenanthroline) were obtained from different metal salts and L with or without 1,10-phen under mild conditions. Complex 1 is a 1-D ladder-like chain composed of 8-membered rings A and 16-membered rings B, which arrange alternately. Complex 2 is an infinite linear chain, further bridged to form a parallel double chain through different hydrogen-bond interactions. Complex 3 is a discrete dinuclear structure, while 4 is a neutral 1-D infinite zigzag coordination chain. Complex 5 is a 1-D linear chain with phen and ferrocene groups of L as pendants hanging on the different sides of the main chain. Variable temperature magnetic susceptibilities of 1 were measured and weak antiferromagnetic exchange interactions between the neighboring Mn(II) ions were found with J = −0.95 cm−1.
As hazardous environmental pollutants, residual tetracycline (TC) and acetone are harmful to the ecosystem. Therefore, it is necessary to detect the presence of these pollutants in the environment. In this work, using Zn (II) salt, 4-(4-carboxy phenoxy) phthalic acid (H3L), and 3,5-bis(1-imidazolyl) pyridine (BMP), a new metal-organic framework (Zn-MOF) known as [Zn3(BMP)2L2(H2O)4]·2H2O was synthesized using a one-pot hydrothermal method. The Zn-MOF has a three-dimensional framework based on the [Zn1N2O2] and [Zn2N2O4] nodes linked by a tridentate bridge BMP ligand and an L ligand with the μ1:η1η0/μ1:η1η0/μ0:η0η0 coordination mode. There were two kinds of left- and right-handed helix chains, Zn1-BMP and Zn1-BMP-Zn1-L. The complex was stable in aqueous solutions with pH values of 4-10. The Zn-MOF exhibited a strong emission band centered at 385 nm owing to the π*→π electron transition of the ligand. It showed high luminescence in some common organic solvents as well as in the aqueous solutions of pH 4-10. Interestingly, TC and acetone effectively quenched the luminescence of the Zn-MOF in aqueous solution and enabled the Zn-MOF to be used as a sensor to detect TC and acetone. The detection limits of TC and acetone were observed to be 3.34 µM and 0.1597%, respectively. Even in acidic (pH = 4) and alkaline (pH = 10) conditions, the Zn-MOF showed a stable luminescence sensing capability to detect TC. Luminescence sensing of the Zn-MOF for TC in urine and aquaculture wastewater systems was not affected by the interfering agent. Furthermore, the mechanism of sensing TC was investigated in this study. Fluorescence resonance energy transfer and photoinduced electron transfer were found to be the possible quenching mechanisms via UV-Vis absorption spectra/the excitation spectra measurements and DFT calculations.