The similar visual appearance of superficial basal cell carcinoma (sBCC) and Bowen's disease (BD) may cause confusion for diagnosis.The aim of the study was to investigate the value of ultra-high-frequency ultrasound (uHFUS) in differentiating sBCC from BD.This prospective study included a pilot cohort of 110 patients (73 BDs and 37 sBCCs) from November 2016 to October 2020 and a validation cohort of 42 patients (30 BDs and 12 sBCCs) from July 2021 to December 2021. Clinical and uHFUS features of pathologically confirmed sBCC and BD were assessed. A predictive model was developed based on the uHFUS features of the pilot cohort. Subsequently, the model was validated and compared with clinical diagnosis in the validation cohort.uHFUS features with significant differences between sBCC and BD included lesion surface, skin layer involvement, hyperkeratosis, and hyperechoic spots (all p < 0.05). A prediction model based on the above features was established to identify sBCC and BD in the pilot and validation cohorts with areas under the curve (AUC) of 0.908 and 0.923, sensitivity of 82.3% and 83.3%, specificity of 91.9% and 91.7%, and accuracy of 85.5% and 85.7%, respectively, which were significantly higher than those obtained by clinical diagnosis based on photographic pictures of lesions, with the AUC of 0.692, sensitivity of 63.3%, specificity of 75.3%, and accuracy of 66.7% (all p < 0.05).uHFUS provides detailed internal features of sBCC and BD, which facilitates the differentiation between sBCC and BD, and its diagnostic performance is superior to clinical diagnosis.
Significance Activation-induced cytidine deaminase (AID) is a DNA modifying enzyme crucial for the generation of efficacious antibodies. AID also promiscuously introduces DNA lesions at cancer genes, leading to their chromosome translocation and lymphoma. However, how AID is recruited to these off targets is not well understood. Here, we compare AID-induced translocations in two different cell types, B cells and mouse embryonic fibroblasts. By analyzing the sites where AID is active in a cell type-specific manner, we find that, in addition to transcriptional activity, AID recruitment is mediated by specific epigenetic features associated with active enhancers and transcription elongation. Understanding AID’s targeting mechanism is a fundamental question of immunology with implications for the biology of cancer.
Abstract The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly become a global public health threat. The efficacy of several repurposed drugs has been evaluated in clinical trials. Among these drugs, a second-generation antiandrogen agent, enzalutamide, was proposed because it reduces the expression of transmembrane serine protease 2 (TMPRSS2), a key component mediating SARS-CoV-2-driven entry, in prostate cancer cells. However, definitive evidence for the therapeutic efficacy of enzalutamide in COVID-19 is lacking. Here, we evaluated the antiviral efficacy of enzalutamide in prostate cancer cells, lung cancer cells, human lung organoids and Ad-ACE2-transduced mice. Tmprss2 knockout significantly inhibited SARS-CoV-2 infection in vivo. Enzalutamide effectively inhibited SARS-CoV-2 infection in human prostate cells, however, such antiviral efficacy was lacking in human lung cells and organoids. Accordingly, enzalutamide showed no antiviral activity due to the AR-independent TMPRSS2 expression in mouse and human lung epithelial cells. Moreover, we observed distinct AR binding patterns between prostate cells and lung cells and a lack of direct binding of AR to TMPRSS2 regulatory locus in human lung cells. Thus, our findings do not support the postulated protective role of enzalutamide in treating COVID-19 through reducing TMPRSS2 expression in lung cells.
The Kang-nao-shuai (KNS) capsule is a combined herbal prescription used in the treatment of insomnia, amnesia, neurasthenia, age-related dementia and brain injuries. Multiple constituents are considered to be responsible for the therapeutic effects of this herbal prescription. However, the quality control of the multicomponents is limited.To establish a liquid chromatography-electrospray ionisation-mass spectrometry method for the analysis of 40 constituents in KNS capsules.The optimal chromatographic conditions were achieved on an Agilent C₁₈-column with a gradient elution that consisted of methanol and 0.1% formic acid in water. The precursor and product ions of analytes were monitored on a hybrid quadrupole linear ion trap mass spectrometer in positive and negative mode respectively using multiple-reaction monitoring.A total of 40 constituents including organic acid, flavonoid, quinone, terpene, alkaloid and saponin were quantified, most of the 40 components were determined for the first time in the KNS capsule. A quantitative HPLC-ESI-MS/MS method allowing the quantification of 40 marker compounds was optimised and validated for linearity, precision, accuracy, stability, specificity and limits of detection and quantification. The method was successfully applied to analyse 10 batches of KNS capsule.The established method is simple and can be used as a tool for quality evaluation and control of this natural product.
Calumenin isoforms 1 and 2 (calu-1/2), encoded by the CALU gene, belong to the CREC protein family. Calu-1/2 proteins are secreted into the extracellular space, but the secretory process and regulatory mechanism are largely unknown. Here, using a time-lapse imaging system, we visualized the intracellular transport and secretory process of calu-1/2-EGFP after their translocation into the ER lumen. Interestingly, we observed that an abundance of calu-1/2-EGFP accumulated in cellular processes before being released into the extracellular space, while only part of calu-1/2-EGFP proteins were secreted directly after attaching to the cell periphery. Moreover, we found the secretion of calu-1/2-EGFP required microtubule integrity, and that calu-1/2-EGFP-containing vesicles were transported by the motor proteins Kif5b and cytoplasmic dynein. Finally, we determined the export signal of calu-1/2-EGFP (amino acid positions 20–46) and provided evidence that the asparagine at site 131 was indispensable for calu-1/2-EGFP stabilization. Taken together, we provide a detailed picture of the intracellular transport of calu-1/2-EGFP, which facilitates our understanding of the secretory mechanism of calu-1/2.
Pre-B cell acute lymphoblastic leukemia (ALL) is the most prevalent childhood malignancy and remains one of the highest causes of childhood mortality. Despite this, the mechanisms leading to disease remain poorly understood. We asked if recurrent aberrant DNA methylation plays a role in childhood ALL and have defined a genome-scale DNA methylation profile associated with the ETV6-RUNX1 subtype of pediatric ALL. Archival bone marrow smears from 19 children collected at diagnosis and remission were used to derive a disease specific DNA methylation profile. The gene signature was confirmed in an independent cohort of 86 patients. A further 163 patients were analyzed for DNA methylation of a three gene signature. We found that the DNA methylation signature at diagnosis was unique from remission. Fifteen loci were sufficient to discriminate leukemia from disease-free samples and purified CD34+ cells. DNA methylation of these loci was recurrent irrespective of cytogenetic subtype of pre-B cell ALL. We show that recurrent aberrant genomic methylation is a common feature of pre-B ALL, suggesting a shared pathway for disease development. By revealing new DNA methylation markers associated with disease, this study has identified putative targets for development of novel epigenetic-based therapies.
Zika virus (ZIKV) infection during pregnancy causes congenital abnormalities, including microcephaly. However, rates vary widely, and the contributing risk factors remain unclear. We examined the serum antibody response to ZIKV and other flaviviruses in Brazilian women giving birth during the 2015–2016 outbreak. Infected pregnancies with intermediate or higher ZIKV antibody enhancement titers were at increased risk to give birth to microcephalic infants compared with those with lower titers (P < 0.0001). Similarly, analysis of ZIKV-infected pregnant macaques revealed that fetal brain damage was more frequent in mothers with higher enhancement titers. Thus, features of the maternal antibodies are associated with and may contribute to the genesis of ZIKV-associated microcephaly.