A hexagonal WO3 nanowire array film is obtained using a template-free hydrothermal method by adding ammonium sulfate as a capping agent. The WO3 nanowires grown vertically on a FTO-coated glass substrate are woven together at the surface of the film, forming well-aligned arrays at the bottom part and a porous surface morphology. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) reveal that each nanowire is a hexagonal single crystal and their long axes are oriented toward the [0001] direction. Due to the highly porous surface, good contact with the conductive substrate and large tunnels of the hexagonal-structured WO3, a fast switching speed of 7.6 and 4.2 s for coloration and bleaching, respectively, and a high coloration efficiency of 102.8 cm2C−1 are achieved for the WO3 nanowire array film.
Abstract Quasi‐solid‐state lithium metal batteries are deemed as one of the most promising next‐generation energy storage devices due to their enhanced safety and high energy density. However, the Li/Gel polymer Electrolyte (GPE) interface deterioration induced by the side reactions, dendrite growth during Li plating, and contact loss during Li stripping will inevitably lead to the failure of the battery. Herein, a Li/Li 23 Sr 6 –Li 3 N/Sr 2 N anode structure (LSN) prepared by hot‐rolling process is designed, where Sr 2 N serves as an inert skeleton to retain the interfacial coupling and to avoid contact loss. At the same time, the Li 3 N–Li 23 Sr 6 interphase with high Li adsorption energy and fast Li + transfer kinetics regulate the Li plating behavior. Benefitting from the design, when coupled with the carbonate‐based GPE, the lifespan of the symmetric battery with the LSN is extended to 1300 h at 0.2 mA cm −2 /0.2 mAh cm −2 . Furthermore, the LSN||LiFePO 4 (LFP) full cell exhibits a steady cycle with extremely low voltage polarization at 0.5 C after 200 cycles. This study provides a practical strategy to stabilize the Li/GPE interface and deepens the understanding of Li + plating/stripping behaviors through the interphase.
Sulfide electrolytes represent a crucial category of superionic conductors for all-solid-state lithium metal batteries. Among sulfide electrolytes, glassy sulfide is highly promising due to its long-range disorder and grain-boundary-free nature. However, the lack of comprehension regarding glass formation chemistry has hindered their progress. Herein, we propose interstitial volume as the decisive factor influencing halogen dopant solubility within a glass matrix. We engineer a Li
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Sulfide-based all-solid-state lithium batteries (ASSLBs) assembled with Ni-rich layered cathodes are currently promising candidates for achieving high-energy-density and high-safety energy storage systems. However, the interfacial challenges between sulfide electrolyte and Ni-rich layered cathode, such as space charge layer, side reaction, and poor physical contact, greatly limit the practicality of all-solid-state batteries. In this work, an optimal crystalline Li0.35La0.55TiO3 (LLTO) surface coating with a thickness of roughly 6 nm and a high Li ion conductivity of 0.3 mS cm–1 was adopted to enhance the structural stability of the single-crystal LiNi0.6Co0.2Mn0.2O2 (S-NCM622) cathode in ASSLBs. Furthermore, due to the high ionic conductivity and chemical stability of the LLTO coating layer, the interfacial problems, involving interfacial reaction and a space charge layer, in sulfide-based all-solid-state batteries have been effectively solved. As a result, the assembled ASSLBs with the S-NCM622@LLTO cathode exhibit high initial capacity (179.7 mAh g–1) at 0.05 C and excellent cycling performance with 84.5% capacity retention after 100 cycles at 0.1 C at room temperature. This work proposes an effective strategy to enhance the performance of Ni-rich layered cathodes for next-generation high-energy-density sulfide-based lithium batteries.
Abstract Rational design and synthesis of advanced anode materials are extremely important for high‐performance lithium‐ion and sodium‐ion batteries. Herein, a simple one‐step hydrothermal method is developed for fabrication of N‐C@MoS 2 microspheres with the help of polyurethane as carbon and nitrogen sources. The MoS 2 microspheres are composed of MoS 2 nanoflakes, which are wrapped by an N‐doped carbon layer. Owing to its unique structural features, the N‐C@MoS 2 microspheres exhibit greatly enhanced lithium‐ and sodium‐storage performances including a high specific capacity, high rate capability, and excellent capacity retention. Additionally, the developed polyurethane‐assisted hydrothermal method could be useful for the construction of many other high‐capacity metal oxide/sulfide composite electrode materials for energy storage.
SnO2 has been extensively studied as an anode material for sodium-ion batteries, which, however, has long been subjected to poor conductivity and large volume expansion accompanied with an unsatisfactory electrochemical performance. Here, novel interlaced SnO2 nanoflakes are synthesized directly on a carbon cloth collector via hydrothermal and annealing treatment and then coated with polypyrrole (PPy) via electrodeposition. The as-prepared flexible SnO2@PPy on the carbon cloth exhibits a high initial capacity of 1172.1 mAh g-1 and an outstanding cycling stability with 85% capacity retention after 300 cycles at 0.1 A g-1, which can be contributed to the interlaced SnO2 nanoflakes as well as the coating of PPy. This result shows promising potential for construction of an electrode in high-performance energy storage fields.